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Visual Attention Analysis and Prediction on Human Faces

for Children with Autism Spectrum Disorder
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The focus of this article is to analyze and predict the visual attention of children with Autism Spectrum
Disorder (ASD) when looking at human faces. Social difficulties are the hallmark features of ASD and will lead
to atypical visual attention toward various stimuli more or less, especially on human faces. Learning the visual
attention of children with ASD could contribute to related research in the field of medical science, psychology,
and education. We first construct a Visual Attention on Faces for Autism Spectrum Disorder (VAFA) database,
which consists of 300 natural scene images with human faces and corresponding eye movement data collected
from 13 children with ASD. Compared with matched typically developing (TD) controls, we quantify atypical
visual attention on human faces in ASD. Statistics show that some high-level factors such as face size, facial
features, face pose, and facial emotions have different impacts on the visual attention of children with ASD.
Combining the feature maps extracted from the state-of-the-art saliency models, we get the visual attention
model on human faces for individuals with ASD. The proposed model shows the best performance among
all competitors. With the help of our proposed model, researchers in related fields could design specialized
education contents containing human faces for the children with ASD or produce the specific model for
rapidly screening ASD using their eye movement data.
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1 INTRODUCTION

Autism Spectrum Disorder (ASD) is one type of neurodevelopmental disorder. Sensory symptoms
are identified to be the core characteristics of the neurobiology of autism [52]. As an important
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aspect of sensory perception, atypical visual attention is often observed in people with ASD [56].
Eye movements encode rich information about attention, oculomotor control, and psychological
factors of an individual. Cognition condition could be reflected from the eye movements as well.
Several attention differences between individuals with ASD and healthy people have been reported
in the literature [18], including reduced joint-attention behaviors [48], reduced attention to social
scenes [12], and preference to low-level features of the stimuli [64]. In brief, individuals with autism
show reduced attention to social stimuli (i.e., faces, conversations, etc.) but pay more attention to
non-social stimuli (i.e., vehicles, electronics, etc.) [17, 54].

Since faces are important social cues, research on the face processing for ASD has attracted the
attention of many researchers. Compared to the normal population, individuals with ASD have
impairments in face recognition or discrimination [26, 34, 36]. Existing eye-tracking experiments
consistently demonstrate that people with ASD have reduced visual attention to faces compared
to the controls [24]. Regarding visual attention on core facial features, some studies found reduced
visual attention of people with ASD to these regions [14, 35], while other studies reported no
differences in gaze patterns between ASD and typically developing (TD) individuals [6, 23]. More-
over, the influence of facial emotions on the visual attention between ASD individuals and healthy
people is different [2].

Previous research in the visual attention of ASD individuals on human faces used restricted
stimuli, i.e., faces in isolation or on a similar background. Moreover, the small number of images
in previous research is not sufficient to conduct a systematic analysis for the visual attention of
ASD patients on human faces from low-level visual features to high-level semantic features. Thus,
in this article, we first establish a Visual Attention on Faces for Autism Spectrum Disorder (VAFA)
database. We collect 300 images from an open face database [45]. These images contain faces of
various ages, genders, sizes, poses, expressions, and so forth. Then we perform eye-tracking ex-
periments on 13 individuals with ASD and 15 healthy people, respectively. The ASD group and
TD group are matched on race, age, gender, and education. A facial behavior analysis toolkit [5]
is used to detect facial landmark, face pose [68], and Action Units (AUs) [4]. 300 face images, the
corresponding eye-tracking data of ASD individuals and healthy individuals, the facial landmark
localization, face pose, and AU detection results together constitute the VAFA database. As far
as we know, the VAFA database is the largest database of its kind which contains natural scene
images with one face as the main content of the image.

With the advent of deep neural networks (DNNs), state-of-the-art deep saliency models could
automatically incorporate semantic features and achieve great performance. Nevertheless, people
with ASD have atypical visual attention; the visual attention model should be retraining or re-
designed. Due to the difficulty of obtaining the eye movement data of individuals with ASD, we
only have 300 images with the fixation data of 13 ASD participants. And it is inadequate to train
an end-to-end deep neural network. Thus, based on our VAFA database, we first analyze the visual
attention differences between individuals with ASD and healthy people on human faces from four
influencing factors, which are facial proportion, core facial features, face pose, and facial expres-
sions. Then we extract special feature maps for ASD and integrate these feature maps adaptively
with features extracted from the CASNet [25], which is a state-of-the-art saliency prediction model
for healthy individuals. Finally, through fine-tuning the network, we get the visual attention model
for ASD on human faces. The construct model has achieved the best performance so far.

Analysis and prediction of the visual attention of ASD on human faces have great significance
to related research fields. With the help of our VAFA database and saliency model designed for
ASD, researchers could characterize the visual attention traits of ASD on human faces and un-
derstand ASD better [63]. Prediction of the visual attention of ASD on human faces has many
application scenarios as well. Based on our VAFA database and proposed saliency model, special-
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ized textbooks containing human faces could be designed for individuals with ASD. Similar to the
applications of general visual attention models in signal processing research [20, 43, 44, 46, 69,
72], we can also use the saliency models designed for the ASD to develop relevant signal process-
ing techniques specifically for the ASD. These techniques could be used to evaluate the mental
condition of ASD individuals during their interaction with people and give specific suggestions.
Furthermore, learning the visual attention of people with ASD could be used to classify the gaze
patterns of ASD individuals and healthy people [32]. Since the diagnostic procedure of ASD is ex-
pensive, subjective, and time-consuming, it can be of great value to use visual attention methods
to assist the diagnosis of ASD. Moreover, deep CNNs have been used in visual related fields for
many years. Nowadays, interpretable representations of CNNs are widely studied. Disentangled
representation learning or visually interpretable representation learning for the visual attention
of individuals with ASD on human faces may be a future research direction [58, 67, 71].

The remainder of this article is organized as follows. In Section 2, we briefly review the related
works. Section 3 describes the procedure of our eye-tracking experiments and detailed information
of our database. In Section 4, we analyze the difference of visual attention on human faces between
individuals with ASD and healthy controls. In Section 5, we propose and evaluate our model. We
present our conclusions in Section 6.

2 RELATED WORK

2.1 Visual-Attention Model of Healthy People

Humans have a remarkable ability to focus on the salient regions in a scene [10, 41], which al-
lows us to handle large amounts of visual information efficiently. This neural mechanism of the
human visual system (HVS) is known as visual attention. Most traditional visual saliency models
belong to a bottom-up mechanism, which usually consists of three cascaded steps: visual feature
extraction, saliency inference, and saliency integration. These bottom-up visual saliency mod-
els mainly adopted various hand-designed features, including low-level features [30, 39], middle-
level features [40], high-level features [8, 33], audio-visual features [47], and motion features [28].
Deep neural networks (DNNs) are state-of-the-art architectures in machine learning. With the help
of DNNs, the saliency prediction task has achieved significant improvement [37, 60–62]. Huang
et al. [29] computed the saliency map through concatenating fine and coarse features extracted
from two stream convolutional networks. Cornia et al. [15] proposed to combine multi-level fea-
tures extracted from the VGG net and then obtain the saliency map. Cornia et al. [16] also used a
convolutional LSTM to enhance the feature maps extracted from a Dilated Convolutional Network.
Pan et al. [49] proposed to use a generative adversarial network (GAN) to calculate the saliency
map. Fan et al. [25] proposed to add a subnetwork for contextual saliency weight computation
after the SALICON net [29].

2.2 Visual-Attention Analysis of Individuals with ASD

Since it is important to characterize the visual attention of ASD, many studies related to this topic
have been conducted [56]. Birmingham et al. [7] found reduced attention to social scenes in ASD
using a natural scene as stimuli. Sasson and Touchstone [55] researched the preference of the vi-
sual attention of individuals with ASD using competing social and object images and reported
that ASD individuals attended less than controls to faces. Wang et al. [64] demonstrated that ASD
individuals have impaired social attention in visual search. Wang et al. [63] also quantified the
atypical visual attention of ASD through multi-level features. They proposed that ASD individuals
are attracted more by low-level features (such as contrast, color, and orientation). Chevallier et al.
[13] measured social attention of ASD through multi-task analysis. Mcpartland et al. [42] studied
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atypical visual attention patterns in individuals with ASD when faces and objects were used as
stimuli. Rice et al. [51] studied the visual scanning strategies of social scenes in school-aged chil-
dren with ASD and their relationship to early social disability measurement. Samad et al. [53] also
reported spontaneous visual responses to stimuli in individuals with ASD may be used as behav-
ior markers for them. In the previous work [19], we constructed a saliency prediction for children
with the ASD (SPCA) dataset. The SPCA dataset includes 500 images with corresponding fixation
data of subjects with ASD and TD subjects. The images in the SPCA dataset cover various types
of contents. However, the number of images for each type is limited. This limited number is not
sufficient to analyze the atypical traits of the visual attention of the people with ASD to specific
types of stimuli.

2.3 Visual Attention of the People with ASD on Human Faces

One of the most-studied areas of visual processing in ASD is face processing, because ASD is
characterized as a social deficit, and faces are believed to be the most “social” visual stimuli. Amso
et al. [1] investigated the bottom-up attention orienting to faces across various developmental
participants and showed the difference across various ages. Vabalas and Freeth [59] analyzed the
eye movements’ patterns during a face-to-face interaction and suggested that the individual dif-
ferences were related to the amount of traits of individuals with ASD. Åsberg Johnels et al. [2]
analyzed the gaze patterns of ASD individuals on various emotional faces. They showed that dif-
ferent emotional content causes diverse gaze behavior and the effect is different between individ-
uals with ASD and healthy people. Yi et al. analyzed the difference of gaze pattern on human faces
for the ASD and TD using multi-method analysis [65, 66]. Although this topic is important, in our
previous work [19] or other researchers’ works, the limited number of images containing human
faces is not sufficient to analyze the atypical visual attention of the people with ASD to human
faces. Thus, in this article, we constructed the visual attention on faces for the Autism Spectrum
Disorder (VAFA) database.

3 EYE-TRACKING EXPERIMENTS

Detailed procedures of eye-tracking experiments are introduced in this section. First, we describe
the stimuli and apparatus we used in the experiments. Then the basic information of subjects
including children with ASD and their matched controls are presented. Next, we introduce the
detailed experimental procedures. Finally, we provide detailed construction information for the
VAFA database.

3.1 Stimuli and Apparatus

The images we used as stimuli are collected from an open face database [45]. This database has 481
source images with resolutions of 1,280 × 960, 1,024 × 1,024, or 768 × 1,024 (width × height). The
collected images contain faces of various sizes, poses, emotions, ages, genders, and so forth. We
select 300 images from this database considering the balance of various emotions and whether the
content is appropriate for children. Finally, the selected images are classified into six expressions.
The six expressions are generally positive, very positive, neutral, generally negative, very negative,
and complex expressions, respectively, as shown in Figure 1. Each expression has 50 images in our
database.

The apparatus we used to display stimuli and record eye movement data is Tobii T120 Eye
Tracker, which has a 17-inch display with the resolution of 1,280 × 1,024 (width × height) pixels.
Subjects are seated around 65cm from the eye tracker. The sampling rate is set to 120Hz.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 3s, Article 90. Publication date: October 2019.



Visual Attention Analysis and Prediction on Human Faces for Children with ASD 90:5

Fig. 1. Six different sample expressions with their corresponding face landmarks and estimated face poses
(yaw angles). The first line shows raw images. The image from the left to the right represents the expressions
of generally positive, very positive, neutral, generally negative, very negative, and complex, respectively. The
second line shows the face landmarks and estimated face poses of the images above.

Table 1. Descriptive Characteristics of All Participants

Group Total: Male Handed
Age (Years) Performance IQ

Range M (SD) Range M (SD)
ASD 13:11 12 Right 5.0–12.3 7.8 (2.1) 80–113 97.1 (9.9)

1 Left
TD 15:12 13 Right 5.2–12.1 8.0 (2.0) 90–120 105.6 (8.9)

2 Left

3.2 Subjects

Nineteen high-functioning children with ASD were recruited. All ASD participants met DSM-V
diagnostic criteria for autism [3]. Because it is difficult for the children with ASD to concentrate on
the screen, only 13 subjects could complete the calibration step and obtain effective eye movement
data. Among the six participants whom cannot complete the experiments, four of them did not look
at the screen at all, and the other two individuals have large errors in calibration. We measured
errors of the calibration using the calibration error vectors in the calibration result figure of “Tobii
Studio.” We would recalibrate it if the length of the calibration error vectors is more than twice the
diameter of the standard circle given by “Tobii Studio.” The two individuals who have large errors
in calibration cannot provide good calibration data in any session of the experiment. Thus, we
exclude the eye movement data of these two participants in this study. The age of the remaining
participants with ASD ranged from 5 years old to 12 years old and the mean age of the subjects was
7.8 years old. Fifteen healthy children were recruited as controls. The age of the healthy children
also ranged from 5 years old to 12 years old and the mean age was 8 years old. Besides the age,
to guarantee the generalization of our database and saliency model, we also matched the gender,
handedness, age, and performance IQ of the two groups. Table 1 presents the descriptive infor-
mation of all participants in detail. All participants had normal or correct-to-normal visual acuity.
Before the experiments, the parents of all participants gave written informed consent.

3.3 Experimental Procedures

Three hundred images were shuffled into a random sequence. Due to the lack of patience of ASD
participants, the experiment was split into 10 recording sessions. Each session has 30 randomly
selected images. Test images were displayed in a random order at full resolution for 3 seconds.
Each image was followed by a 1-second gray screen mask. At the beginning of each session, the
eye-tracking calibration process was conducted to ensure the reliability of the data. And before
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Fig. 2. Definition of some facial regions on human faces. (a) Example image with facial landmark and ROIs

on it. (b) Definition of face size. W and H are face width and height, respectively. H = 4
3 · h, and face size S =√

W · H . (c) ROIs creation. Dashed rectangles show the smallest rectangles cover the key landmark (marked
as red). Solid rectangles show the enlarged ROIs. Enlarging factors are different for different ROIs. Detailed
enlarging factors can be found in Table 2 in [45]. (d) Segmentation of ROIs. The eye region is segmented into
four regions: Top Left (TL), Top Right (TR), Bottom Left (BL), and Bottom Right (BR), respectively. The nose
region and mouth region are segmented into three regions: Left (L), Middle (M), and Right (R), respectively.

the experiments, subjects were told to look at images freely. However, because of difficulty con-
centrating, we had to remind the ASD participants to look at images during the experiments. The
same experimental procedures are also conducted for the healthy controls. The experiments lasted
10 weeks with one week one session.

3.4 The VAFA Database

From the eye movement data obtained in the experiments, the fixation map is generated. We over-
lay the fixation points of all ASD participants into one map and get the fixation map of individuals
with ASD. With the same methods, we get the fixation map of controls. The fixation map is then
smoothed with a Gaussian kernel to generate the fixation density map (FDM, also called visual
attention map). We set the standard deviation of the Gaussian kernel to 1◦ of visual angle. In our
experimental condition, the standard deviation of the Gaussian kernel is set as σ = 40.

We use facial landmarks as the key points on faces, and then label the regions of interest (ROIs)
according to these facial landmarks. The difference of visual attention on human faces between
individuals with ASD and controls could be analyzed on these ROIs. A facial behavior analysis
toolkit [5] is used to detect facial landmark and estimate the pose and emotion of faces in this arti-
cle. We use the CE-CLM approach [68] in this toolkit to localize 66 landmark points and estimate
face pose in this article. It is a state-of-the-art face landmark detection approach. Figure 1 shows
the landmarks and face poses in yaw detected using this method. And we use the AU detection
system as stated in [4] to detect facial expressions.

Some facial areas are defined and included in the VAFA database. As shown in Figure 2(a), W
andh are the width and height of the rectangles which could cover all landmarks.W is also defined
as the face width, and the face height is defined as H = 4

3 · h. Thus, the face size S is defined by

S =
√
W · H . Facial ROIs are defined in Figure 2(b). Dashed rectangles show the smallest rectangles

cover the key landmark (marked as red) and solid rectangles show the enlarged ROIs. The dashed
rectangle is enlarged by adding 2 · kw ·W to the width and 2 · kh · H to the height, whereW ,H are
face width and height, and kw , kh are enlarging factors. Detailed enlarging factors can be found in
[45]. Figure 2(d) shows the segmentation methods we used for each ROI. We segment eyes region
into four parts: Top Left (TL), Top Right (TR), Bottom Left (BL), and Bottom Right (BR). Nose and
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Fig. 3. Percentage of fixation points on the human faces versus facial proportion in the image. Green points
represent the percentage of healthy controls’ fixation points on faces. Blue points represent the percentage
of ASD subjects’ fixation points on faces. Red points are obtained by filtering the green points (attribute to
healthy controls) with a moving average filter. Black points are obtained by filtering the blue points (attribute
to ASD group) with a moving average filter. Vertical axis represents the percentage of fixation points on the
human faces. Horizontal axis represents facial proportion.

mouth regions are segmented into three parts: Left (L), Middle (M), and Right (R). We segment the
ROI for the following detailed analysis.

4 VISUAL ATTENTION ANALYSIS ON HUMAN FACES: COMPARING BETWEEN

INDIVIDUALS WITH ASD AND HEALTHY CONTROLS

4.1 Effect of Face Size

In [45], Normalized Scanpath Saliency (NSS) [50], the shuffled version of Area Under Curve (sAUC)
[70], and Correlation Coefficient (CC) are used to evaluate the performance of the GaussFC model.
The GaussFC model is simply set a 2D Gaussian kernel at the face center of the image. The results
show that with the face size increase, the performance of the GaussFC model decreases. It means
that we need a more accurate face saliency model when the face occupies most of the image.
Although state-of-the-art deep saliency models could automatically incorporate face features, the
eye movement data in our VAFA database is not enough to train an end-to-end specific saliency
model for ASD. To get an accurate face saliency model for individuals with ASD, we should extract
special feature maps.

Figure 3 illustrates the tendency between the percentage of fixation points on the human faces
and facial proportion in the image. The definition of face size is described in Figure 2(b). The
green points represent the percentage of healthy controls’ fixation points on faces. The blue points
represent the percentage of ASD subjects’ fixation points on faces. To get an overall view of the
tendency, we filter the data by a moving average filter and then scatter the results in Figure 3. The
span of the moving average filter is set to 30. The red points represent the tendency of healthy
controls and the black points represent the tendency of ASD subjects. The percentage of fixation
points on the human faces increases along with the increase of facial proportion in the image, no
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Fig. 4. Overall fixation distribution on faces. Vertical axis denotes the percentage of fixation points falling
on corresponding ROIs. Horizontal axis denotes ROIs as defined in Figure 2(c). Red bars represent the per-
centages of fixation points of the ASD group. Blue bars represent the percentages of fixation points of the
TD group.

matter for ASD participants or healthy controls. By comparing the red points and black points, it is
obvious that healthy people fixate more on human faces than the people with ASD. The percentage
difference is about 10% on average. Thus, we use a smaller Gaussian kernel at the center of faces
and extract a rough face feature map.

4.2 Effect of Facial Features

Facial features such as eyes, nose, and mouth have influences on the visual attention. In this section,
we quantify the differences of visual attention between ASD participants and healthy controls in
these facial ROIs.

4.2.1 Overall Fixation Distribution Differences. ROIs are defined as shown in Figure 2(c). Based
on the definition, we could analyze the overall fixation distribution differences on human faces.
Figure 4 illustrates the percentage of fixations in each ROI for ASD participants and healthy con-
trols. Red bars represent the ASD group while blue bars represent the TD group. The vertical axis
denotes the percentage of fixations falling into corresponding ROIs. The horizontal axis denotes
ROIs. From this figure, we can see that the percentage of fixation points of ASD subjects in each
ROI is less than that of healthy controls in each ROI. We believe it is due to the atypical visual
attention in ASD. Note that for the ASD group, the percentage of fixations in eyes ROIs is more
than it is in nose or mouth ROIs. The hypothesis of excess mouth viewing in autism did not re-
ceive support in this study. This phenomenon is in keeping with the majority of studies in the
related field of ASD [2, 22, 27]. This phenomenon may be caused by the different definitions of
ROIs. Comparing between each ROI, we can see that the percentages of fixations of people with
ASD in nose regions and mouth regions are almost the same, while healthy people fixate more on
nose regions than on mouth regions. As shown in Table 2,T -statistics show significant differences
in these comparisons.

4.2.2 Differences of Fixation Distribution Bias in Specific ROIs. To analyze the detailed fixation
distribution differences in each ROI, we segment each ROI into several small symmetrical ROIs. As
shown in Figure 2, the eyes region is segmented into four parts: top left, top right, bottom left, and
bottom right. The nose and mouth region is segmented into three parts: left, middle, and right.
Figure 5 illustrates the differences of fixation distribution bias in each ROI between the people
with ASD and healthy controls. Red bars in Figure 5 show the detailed fixation distribution of ASD
participants in the left eye region, right eye region, nose region, and mouth region, respectively.
Blue bars in Figure 5 show the detailed fixation distribution of healthy subjects in the left eye
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Table 2. t-Test for the Between-Group Comparison
Over 300 Images for Items in Figure 4

ROIs Left eye Right eye Nose Mouth
H 1 1 1 1
P 1.67e-36 3.38e-14 2.45e-69 3.57e-24

H = 1 indicates that t -test rejects the null hypothesis at the 5%
significance level (i.e., the difference between two groups is sig-
nificant), while H = 0 indicates that t -test dose not reject the
null hypothesis at the 5% significance level. H : test decision for
the null hypothesis; P : p-value for the T -statistic.

Fig. 5. Fixation distribution in each ROI. Vertical axes denote the percentage of fixation points belonging
to the small part. Horizontal axes denote the names of small parts. Red bars represent the percentages
of fixation points of individuals with ASD. Blue bars represent the percentages of fixation points of the
TD group. (a) Fixation distribution in the left eye region. (b) Fixation distribution in the right eye region.
(c) Fixation distribution in the nose region. (d) Fixation distribution in the mouth region.

region, right eye region, nose region, and mouth region, respectively. Comparing red bars and blue
bars in Figure 5(a) and (b), both ASD participants and healthy subjects look most at the bottom
right part of the left eye region and the bottom left part of the right eye region. But for the second
salient part, people with ASD tend to look more at the top right of the left eye region and the
top left of the right eye region, while healthy subjects are likely to look more at the bottom left
of the left eye region and the bottom right of the right eye region. Moreover, it is obvious that
the fixation distribution of the people with ASD in the eye region is more dispersed than that of
healthy controls. A similar phenomenon also appears in the nose region and mouth region, as
shown in Figure 5(c) and (d).

Figure 5(c) and (d) illustrate fixation distribution of ASD participants and healthy controls in
the nose and mouth regions, respectively. As shown in Figure 5(c) and (d), for healthy controls,
the middle part of both nose and mouth regions are much more salient than other parts. A similar
phenomenon also appears in the ASD group. Nevertheless, compared with healthy controls, ASD
participants fixate more on the nose or mouth ROIs, while the healthy controls fixate more on the
middle part. Table 3 shows the t-test for the between-group comparison over 300 images for small
parts in each ROI. Statistics show that nearly all of these differences in corresponding small parts
of ROIs are significant.

4.3 Effect of Face Pose

In [45], the authors discussed the effect of face pose on the visual attention of healthy people. In this
article, we compare the difference of this effect between ASD subjects and healthy subjects. Fig-
ure 6 illustrates the influence of face pose on the fixation distribution of ASD and healthy controls.
We mainly consider the yaw of face pose in this article. Figure 6(a)–(d) show the influence of yaw
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Table 3. t-Test for the Between-Group Comparison Over 300 Images for Items in Figure 5

ROIs Left Eye (tl) Left Eye (tr) Left Eye (bl) Left Eye (br) Right Eye (tl) Right Eye (tr) Right Eye (bl)

H 1 1 1 1 1 1 1

P 8.61e-09 3.65e-20 4.41e-10 7.19e-17 1.50e-03 5.75e-09 7.85e-15

ROIs Right Eye (br) Nose (l) Nose (m) Nose (r) Mouth (l) Mouth (m) Mouth (r)

H 1 0 1 1 1 1 1

P 2.19e-02 2.43e-01 1.36e-10 1.55e-12 1.91e-02 5.95e-26 7.07e-35

H = 1 indicates that t -test rejects the null hypothesis at the 5% significance level (i.e., the difference between two
groups is significant), while H = 0 indicates that t -test does not reject the null hypothesis at the 5% significance
level. tl: top lef; tr: top right,; bl: bottom left; br: bottom right; l: left; m: middle; r: right; H : test decision for the null
hypothesis; P : p-value for the T -statistic.

Fig. 6. Influence of face pose on the fixation distribution of ASD and healthy controls. For each point in
each scatter plot, it represents the percentage of fixation points of the ASD group or the TD group falling
into corresponding ROIs. (a)–(d) Scatter plot of the percentages of ASD participants’ fixations on the left eye
region, right eye region, small parts in the nose region, and small parts in the mouth region, respectively,
with varying yaw angle. (e)–(h) Scatter plot of the percentages of healthy subjects’ fixations on the left eye
region, right eye region, small parts in the nose region, and small parts in the mouth region, respectively, with
varying yaw angle. Note that the vertical axes in (a), (b), (e), and (f) denote the ratio of fixations belonging
to the left or right eye region to all fixations in the test image, while the vertical axes in (c), (d), (g), and
(h) denote the ratio of fixations belonging to the small part (i.e., Left, Middle, and Right) to the fixations
belonging to specific ROIs (i.e., nose and mouth).

angle on percentages of fixations of ASD in the left eye region, right eye region, nose region,
and mouth region, respectively. Figure 6(e)–(h) show the influence of yaw angle on percentages of
fixations of healthy subjects in the left eye region, right eye region, nose region, and mouth region,
respectively. We apply a linear model to fit the scatter points in Figure 6:

f (Y ) = p0 + p1 · Y ,−56.4 ≤ Y ≤ 47.0, (1)

where the Y is the yaw angle, f (Y ) represents the percentage of fixations, and p0, p1 represent
two fitting parameters obtained by a least-square fitting. Table 4 gives the fitting results, in which
value represents the estimated value, SE indicates standard error, and p-value denotes the p-value

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 3s, Article 90. Publication date: October 2019.



Visual Attention Analysis and Prediction on Human Faces for Children with ASD 90:11

Table 4. Parameters of the Fitted Linear Models

Groups ROIs
p0 p1

value SE p-value value SE p-value

ASD

Left eye 1.36e-1 4.47e-3 4.02e-93 −2.08e-3 2.75e-3 4.21e-13

Right eye 1.43e-1 4.39e-3 7.80e-100 1.48e-3 2.69e-4 8.65e-8

Nose (left) 2.90e-1 1.48e-2 6.29e-55 −5.65e-3 9.33e-4 4.48e-9

Nose (middle) 3.67e-1 1.40e-2 2.43e-78 −4.08e-4 8.82e-4 6.44e-1

Nose (right) 3.48e-1 1.56e-2 1.71e-64 6.01e-3 9.87e-4 3.63e-9

Mouth (left) 1.59e-1 1.13e-2 1.58e-34 −1.73e-3 6.89e-4 1.24e-2

Mouth (middle) 5.26e-1 1.59e-2 1.27e-98 −9.65e-4 9.74e-4 3.23e-1

Mouth (right) 3.21e-1 1.57e-2 1.32e-57 2.56e-3 9.58e-4 7.99e-3

TD

Left eye 1.89e-1 4.03e-3 8.78e-139 −2.31e-3 2.48e-4 2.61e-18

Right eye 1.79e-1 3.49e-3 3.97e-149 3.11e-3 2.14e-4 2.80e-36

Nose (left) 3.06e-1 6.71e-3 1.72e-135 −8.06e-3 4.12e-4 3.53e-55

Nose (middle) 4.69e-1 7.03e-3 5.35e-180 8.35e-4 4.32e-4 5.39e-2

Nose (right) 2.32e-1 7.28e-3 1.01e-97 7.26e-3 4.47e-4 9.54e-43

Mouth (left) 1.89e-1 7.28e-3 5.65e-78 1.58e-5 4.47e-4 9.72e-1

Mouth (middle) 7.22e-1 7.58e-3 1.23e-223 4.25e-4 4.66e-4 3.62e-1

Mouth (right) 9.55e-2 5.21e-3 1.38e-50 −5.02e-4 3.20e-4 1.18e-1

Left: left part; middle: middle part; right: right part. value : estimated value. SE : standard error. p-value : p-value for
the T -statistic.

for theT -statistic. TheT -statistic is used to validate the effectiveness of fitting results. If p-value is
less than 0.001, the fitting results are significant, otherwise, we should discard the fitting results.

For each point in each scatter plot of Figure 6, it represents the percentage of fixation points of
the ASD or TD group falling into corresponding ROIs. As shown in Figure 6(a), (b), (e), and (f), in the
left eye region, the percentage generally decreases with the yaw angle, and in the right eye region,
the percentage generally increases with the yaw angle. In Table 4, p-value for p1 of these four sub-
figures is very small (p-value < 0.001), therefore we believe that yaw angles have an influence on
fixation distribution on eyes for both people with ASD and healthy people. Moreover, comparing
Figure 6(a) and (e), and (b) and (f), respectively, it is obvious that slopes in (a) and (b) are smaller
than that in (e) and (f), and scatter plots are more dispersed in (a) and (b). In Table 4, for the left
eye region and the right eye region, the values of p1 of the ASD group are smaller than that of TD
group, and the p-values of p1 of the ASD group are much larger than that of the TD group. The
statistics in Table 4 demonstrate the phenomena we observed in Figure 6.

For the nose region, Figure 6(c) and (g) show the scatter plots of the percentages of fixations
belonging to three small parts (e.g., Left, Middle, and Right) with three different colors. It is obvious
that the percentage generally decreases with the yaw angle in the left part of the nose region
and increases with the yaw angle in the right part of the nose region for both people with ASD
and healthy people. We also perform a similar least-square fitting and list the results in Table 4.
Statistics in Table 4 also demonstrate that the phenomena are significant (p-value < 0.001). But for
the middle part of the nose region, we could not find out any trend and p-values of p1 are larger
than 0.001 for both the ASD group and the TD group. For the left part and right part of the nose
region, the values of p1 of the ASD group are smaller than that of the TD group, and the p-values
of p1 of the ASD group are much larger than that of the TD group. This illustrates that for the nose
region, the effect of face pose on the visual attention of people with ASD is smaller than that of
TD people. Comparing Figure 6(c) and (g), we can see that the black points in figure (c) are mixed
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Fig. 7. Linear correlation coefficient (CC) score between ASD participants’ saliency map and healthy partic-
ipants’ saliency map under different facial expressions (emotions). Implication of the labels of the horizontal
axis are as follows. Positive 1: generally positive facial expressions (i.e., smile); Positive 2: very positive facial
expressions (i.e., happy, and laugh); Neutral: neutral facial expressions; Negative 1: generally negative facial
expressions (i.e., sad, disappointment, etc; Negative 2: very negative facial expressions (i.e., fear, anger, cry,
etc.); and Complex: complex facial expressions (i.e., surprise, strange, etc.).

with blue points and pink points. However, in figure (g), the black points are general above the
blue points and pink points. This phenomenon confirms the conclusion obtained in Section 4.2.2.

Figure 6(d) and (h) illustrate the percentages of fixations belonging to three small parts (e.g.,
Left, Middle, and Right) within the mouth region. It seems that for both the ASD group and the
TD group, the percentages of fixations of all three parts do not change with varying yaw angle
significantly. Statistics in Table 4 also confirm this phenomenon (for the p1 of the mouth region
of both the ASD group and the TD group, p-value > 0.001). Moreover, in Figure 6(h), the middle
part (black points) of the mouth region is much more salient than other parts (blue points and pink
points). Nevertheless, in Figure 6(d), the three parts have similar salient weights. This phenomenon
also confirms the conclusion obtained in Section 4.2.2.

4.4 Effect of Facial Expressions

From the demonstration in Figure 4 and the analysis in Section 4.2.1, we could get the overall
fixation distribution of people with ASD on faces. However, facial expressions could also influ-
ence fixation distribution on human faces [21] and the influence of facial expressions on average
fixation points in each ROI is different between ASD patient and healthy people [2]. Thus we dis-
cuss the effect of facial expressions on the visual attention differences between individuals with
ASD and healthy individuals in this section. Since there are many kinds of expressions, we use
positive 1, positive 2, neutral, negative 1, negative 2, and complex represent the level of these ex-
pressions. In detail, positive 1 represents generally positive facial expressions, i.e., smile. Positive 2
represents very positive facial expressions, i.e., happy, and laugh. Neutral represents neutral facial
expressions. Negative 1 represents generally negative facial expressions (i.e., sad, disappointment,
etc.). Negative 2 represents very negative facial expressions (i.e., fear, anger, cry, etc.). Complex
represents complex facial expressions (i.e., surprise, strange, etc.).

Figure 7 illustrates linear CC scores between ASD participants’ saliency map and healthy par-
ticipants’ saliency map under different facial expressions (emotions). For “Positive 1,” “Neutral,”
“Negative 1,” and “Negative 2,” CC scores are around 0.8. Nevertheless, for “Positive 2” and “Com-
plex,” which represent very positive facial expressions and complex facial expressions, respec-
tively, the CC scores are much smaller than others, especially for very positive facial expressions.
It illustrates that people with ASD have much different visual attention than healthy people when
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Fig. 8. Influence of facial expressions on percentage of fixations in each ROI. Red bars represent the per-
centages of fixation points of the ASD group. Blure bars represent the percentages of fixation points of the
TD group. (a) In eye region. (b) Iin nose region. (c) In mouth region.

Table 5. t-Test for the Between-Group Comparison Over 300 Images for Items in Figure 8

ROIs Eye (p1) Eye (p2) Eye (n) Eye (n1) Eye (n2) Eye (c) Nose (p1) Nose (p2) Nose (n)

H 0 1 1 0 0 1 1 1 1

P 7.67e-01 2.20e-03 5.46e-11 4.70e-01 6.54e-02 2.80e-09 1.84e-10 5.92e-08 6.03e-07

ROIs Nose (n1) Nose (n2) Nose (c) Mouth (p1) Mouth (p2) Mouth (n) Mouth (n1) Mouth (n2) Mouth (c)

H 1 1 1 1 1 1 1 0 0

P 9.48e-17 1.04e-07 1.13e-08 1.78e-05 5.86e-10 1.00e-02 3.06e-02 4.06e-01 8.93e-01

H = 1 indicates that t -test rejects the null hypothesis at the 5% significance level (i.e., the difference between two groups is
significant), while H = 0 indicates that t -test does not reject the null hypothesis at the 5% significance level. p1: positive 1;
p2: positive 2;, n: neutral; n1: negative 1; n2: negative 2; c: complex; H : test decision for the null hypothesis; P : p-value
for the T -statistic.

fixating on very positive facial expressions. We believe that the visual attention map of face images
can be applied to distinguish ASD individuals and healthy individuals and it is more reasonable to
use very positive facial expressions as the stimuli from the conclusion above.

Figure 8 illustrates the influence of facial expressions on the percentage of fixations in each ROI.
As shown in Figure 8(a), we can see that under different facial expressions, percentages of fixation
points of healthy people (blue bars) are around 0.4 in the eye region. However, as demonstrated
with red bars in Figure 8(a), for people with ASD, in the eye region, percentages of fixations un-
der “Positive 2,” “Neutral” and “Complex” facial expressions are obviously smaller than that under
“Positive 1,” “Negative 1,” and “Negative 2” facial expressions. In the nose region, as shown in Fig-
ure 8(b), percentages of fixations of healthy people are similar under different facial expressions;
nevertheless, for people with ASD, the percentage of fixations under “Negative 1” facial expression
is smaller than those under other facial expressions. In the mouth region, as shown in Figure 8(c),
both people with ASD and healthy people fixate less under “Positive 1,” “Neutral,” and “Negative 1”
facial expressions. For the other three facial expressions, which are “Positive 2,” “Negative 2,” and
“Complex,” healthy people fixate much more on the mouth region under “Positive 2” expression,
while people with ASD fixate less on the mouth region under “Positive 2” facial expression. Ac-
cording to these phenomena, we could get special features of human face images for ASD. Table 5
shows t-test for the between-group comparison over 300 images for items in Figure 8. Statistics
show that most of these differences are significant.

5 VISUAL ATTENTION PREDICTION ON HUMAN FACES FOR ASD

In Section 4, we compare the differences of visual attention on human faces between ASD par-
ticipants and healthy subjects. In this section, we introduce our method for the visual attention
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Fig. 9. Flowchart of our proposed method. “5” represents five feature maps we extracted, including face, left
eye, right eye, nose, and mouth, since they are the most salient regions in natural images with faces in them.

prediction on human faces for ASD. Figure 9 illustrates the flowchart of our proposed method.
In brief, we extract atypical features from face images according to the special visual attention of
ASD, and then integrate the features via CASNet [25]. The subnetwork of CASNet (as shown in
the dashed red rectangle on the right side of Figure 9) could capture the relative weight of semantic
features of an image. In the following of this section, we first propose some atypical facial features
based on the atypical visual attention analysis in Section 4. Next, we introduce our visual atten-
tion prediction methods on human faces for ASD. Then, we discuss our experimental validation
process and the performance of our proposed method. Finally, we discuss the limitations of our
experiments and propose possible future research directions.

5.1 Atypical Feature Extraction

As described in Section 4, the visual attention of people with ASD is much different compared with
that of healthy people. Thus, in this section, we propose our method of extracting atypical features
from 300 facial images. We first extract face size features from facial images by simply placing a
Gaussian kernel at the center of the face. The standard deviation σ of the Gaussian kernel can be
calculated by σ =

√
S/4, where S denotes the face size. Then we extract atypical facial features for

the left eye region, right eye region, nose region, and mouth region, respectively, according to the
preceding analysis. These five features together constitute the atypical features extracted for ASD.

In previous work, Min et al. [45] proposed a method to extract salient facial features. In this
article, we extract different facial feature points because of atypical visual attention of people with
ASD. Figure 10 illustrates the example of facial feature points extracted from 300 facial images.
Note that for the nose region, we extract different feature points from facial images when the face
pose is turned to the left or right. Then we calculate the feature map by placing a uniform Gaussian
kernel at each extracted feature point and the feature map of region k can be expressed as

Sk (x ) = N
(∑

p

exp

[
−

(x − xp )2

2σ 2

] )
,p ∈ Pk , (2)

σ = wp ·we · 40, (3)

where k represents the ROI (left eye, right eye, nose, or mouth region). p denotes each feature
point in region k and Pk denotes the feature point sets in region k . x can be any two-dimensional
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Fig. 10. Example of facial features extracted from stimuli. Chosen facial marks (marked as red points) for all
ROIs are shown. Note that when the face pose changed, we use different features for the nose region. Posed
toward “left” or “right” is defined based on the viewer’s coordinate system.

coordinate in the image and xp is the coordinate of feature pointp.σ denotes the standard deviation
of the Gaussian kernel. N is used to normalize the extracted feature map to the same dynamic
range (i.e., [0, 1]). wp and we denote the weight coefficients of the influence of face pose or facial
expressions, respectively.
wp represents face pose weight. As described in Section 4.3, we find that the influence of face

poses of faces in facial images on the visual attention of people with autism is less than that of
healthy people. Thus, we consider this atypical feature in this article. Similar to [45], according to
the yaw angle (Y ), we classify the images into three types. However, considering atypical visual
attention of ASD, we define a new face pose range. Compared to the parameters used in [45], we
enlarge the face pose response from 10◦ to 15◦. When Y > 15◦, the face pose is considered to be
toward the left. When Y < −15◦, the face pose is considered to be toward the right. When −15◦ <
Y < 15◦, the face pose is considered to be toward the forward (normal). As shown in Equation (3),
in general condition, when the face is posed toward forward, we set wp = 1. When faces turn to
the left or right, for the left eye region or the right eye region, we use a lower weight for face
pose as shown in Table 6(a). Moreover, we utilize new feature point sets “Posed (right)” or “Posed
(left),” as shown in Figure 10, for nose region, when faces turn to the the right or left. Table 6(a)
summarizes the weights for the effect of face pose in different conditions.
we represents facial expressions weight. As described in Section 4.4, compared to healthy peo-

ple, the visual attention of individuals with ASD will be more influenced by facial expressions in
images. Thus, we introduce a weight coefficient we corresponding to facial expressions in Equa-
tion (3). For each ROI, the value of weightwe comes from the comparison between the percentage
of fixation points of individuals with ASD falling into the ROI. Table 6(b) summarizes the weights
for the effect of face pose in different conditions.

5.2 Atypical Visual Attention Prediction on Human Faces for ASD

To verify the effectiveness of our proposed method, we compare the performance of six state-
of-the-art deep learning based saliency prediction models, including SALICON [29], mlnet [15],
SAM-VGG [16], SAM-ResNet [16], SalGAN [49], and CASNet [25], and their corresponding fine-
tuned models based on our VAFA database. Our goal in this step is to choose one visual attention
model which could get better performance across various evaluation metrics after fine-tuning.
Table 7 lists the performance of these models and their corresponding fine-tuned models on our
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Table 6. Parameters Setting for Atypical Feature Extraction

(a) Face pose weight wp

Conditions Pose
wp

Left eye Right eye Nose Mouth
Normal −15◦ < Y < 15◦ 1 1 1 1
Posed (left) Y > 15◦ 1 1.2 1 1
Posed (right) Y < −15◦ 1.2 1 1 1

(b) Facial expressions weight we

Expressions
we

Eye Nose Mouth
Positive 1 1 1 0.7
Positive 2 0.75 1 1
Neutral 0.75 1 0.7
Negative 1 1 0.7 0.7
Negative 2 1 1 1
Complex 0.75 1 1

Table 7. Results on Testing Set of the VAFA Database

Models
AUC sAUC CC NSS

Original Fine-tuned Original Fine-tuned Original Fine-tuned Original Fine-tuned

SALICON [29] 0.7856 0.8087 0.5419 0.5552 0.5628 0.6448 1.3816 1.4237

mlnet [15] 0.8175 0.8186 0.5509 0.5598 0.6768 0.6955 1.5957 1.6011

SAM-VGG [16] 0.8297 0.8369 0.5529 0.5644 0.7171 0.7710 1.6900 1.7594

SAM-ResNet [16] 0.8288 0.8155 0.5595 0.5585 0.7537 0.6873 1.7764 1.5838

SlaGAN [49] 0.8182 0.8256 0.5824 0.5752 0.6926 0.7422 1.5654 1.6811

CASNet [25] 0.8272 0.8376 0.5825 0.5832 0.7283 0.7791 1.6418 1.7812

“Original” represents the original model designed for healthy people. “Fine-tuned” represents the model fine-tuned based
on the SPCA database and VAFA database. AUC, sAUC, CC, and NSS are used to evaluate the performance of these
models. We highlight the best two results under each evaluation criterion in bold.

testing set of the VAFA database. After fine-tuning, almost all models have performance improve-
ments except SAM-ResNet. We believe that the exception to SAM-ResNet is caused by its complex
network structure. Obviously, the CASNet looks better across all criteria. With this comparison,
we believe that the CASNet after fine-tuning could better match the visual attention patterns of in-
dividuals with ASD. Moreover, CASNet creatively proposed a subnetwork for contextual saliency
perception, especially for emotion perception. Thus, we incorporate atypical features we extracted
into CASNet and enlarge the data dimension of layers after the concatenate layer.

Figure 9 illustrates the flowchart of our methods to predict the atypical visual attention of ASD.
We first extract atypical features for ASD as described in Section 5.1. In this step, we extract five-
dimensional atypical facial features for individuals with ASD. Moreover, as shown in Figure 7,
the visual attention of individuals with ASD and healthy people have a strong correlation. Thus,
we integrate the extracted atypical features via CASNet [25], which is a state-of-the-art visual
attention model of healthy people. The typical features are extracted based on a two-stream VGG
net with different input size. The outputs of the two VGG networks are resized to the same spatial
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dimension. We get 5-dimensional vector, 512-dimensional vector, and 512-dimensional vector from
our atypical features extraction procedure and two VGG 16 net. The size of each feature map is 18 ×
25. Then we concatenate atypical features and typical features, and then feed into the subnetwork
designed for the feature weights’ perception as described in [25]. After the concatenating layer,
the dimension of the feature vector is 1,029. Specifically, we expand the dimension of the fully
connected (fc) layer in the subnetwork to fit our features’ dimension. The dimension of the output
of the subnetwork is 1,029. Next, a multiple layer is used to integrate the weights captured from
the subnetwork into the concatenated features. Finally, passing a convolution layer (also expanded
to fit the dimension) with a 1 × 1 kernel, we get the final saliency map.

5.3 Experimental Validation

5.3.1 Experimental Settings. For fine-tuning six state-of-the-art deep learning based saliency
prediction models, we first pre-train these models on a large saliency dataset—SALICON [31]. Next,
we fine-tune these models on the saliency prediction for children with the ASD (SPCA) dataset
[19]. Finally, we fine-tune these models on the training set of our VAFA database. We randomly
select 240 images as the training set, and another 60 images as the testing set. For SALICON, mlnet,
SAM-VGG, SAM-ResNet, and SalGAN, we set the training parameters to be the same as that in [19]
when fine-tuning these networks. For CASNet, which is not mentioned in [19], SGD is applied with
a learning rate of 10−5, momentum of 0.9, and weight decay of 0.0005 when fine-tuning CASNet.

In order to get the prediction model for the visual attention for ASD, our proposed model should
be trained first. As described in Section 5.2, we expand the dimension for the fully connected layer
and the last convolutional layer to fit the dimension of our proposed method. We first initiate the
added parameters of the two layers with zero weights and keep the other parameters of the original
model of CASNet unchanged. Next, we fine-tune our proposed methods on a saliency prediction
for children with the ASD (SPCA) dataset [19] using a relatively large learning rate of 10−3. Then
we use a learning rate of 10−5 to fine-tune our model based on our VAFA database. During the
fine-tuning procedure, we freeze the network before the “concatenate” layer and only fine-tune
the following network.

The feasibility of using pre-trained networks (VGG) and fine-tuning with small datasets is as fol-
lows. First, as shown in Figure 7, CC comparisons illustrate that individuals with ASD and healthy
controls have similar visual attention patterns on human faces, though differences exist. And care-
fully comparing the visual attention maps of ASD patients and healthy controls, we find that they
are generally similar, but for relatively more salient regions, they are different. Furthermore, as
far as we know, there is no similar large open datasets related to the visual attention of individ-
uals with ASD, which could be used to train an end-to-end DNN. Therefore, we use pre-trained
networks in this article. Moreover, in our previous work [19], we have fine-tuned the neural net-
works on a small dataset and obtained relatively good performance. Thus, the fine-tuning method
is feasible.

5.3.2 Evaluation Criteria. We use six criteria, which are AUC-Judd [33], AUC-Borji [9], sAUC
[70], CC [38], NSS [50], and SIM [57], to evaluate the performance of the visual attention models.
The Area Under receiver operating characteristic (ROC) Curve (AUC) criteria treats the saliency
map as a binary classifier of human fixations with various thresholds. Three kinds of AUC criteria
including AUC-Judd, AUC-Borji, and sAUC are used in this article. In particular, shuffled-AUC
(sAUC) could alleviate the effects of center bias of the fixations. Linear Correlation Coefficient
(CC) computes the linear correlation coefficient between saliency map and visual attention map.
Normalized Scanpath Saliency (NSS) calculates the average normalized saliency at each fixation
point. Similarity Metric (SIM) is calculated by summing the minimum values at each pixel for
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Table 8. Results of Our Proposed Method

Models AUC Judd AUC Borji sAUC CC NSS SIM
CASNet 0.8307 0.7956 0.6220 0.7432 1.6431 0.6339

CASNet fine-tuned 0.8350 0.8052 0.6166 0.7800 1.7492 0.6488
The proposed method 0.8480 0.8234 0.6232 0.8272 1.8239 0.6729

AUC-Judd, AUC-Borji, sAUC, CC, NSS, and SIM are used to evaluate the performance of these models. We highlight
the best performance under each criterion in bold.

normalized input maps. CC, NS, and SIM are similarity criteria which are used to measure the
similarity between the predicted saliency map and the ground-truth visual attention map. Detailed
introduction of these criteria could be found in [11].

5.3.3 Results. As shown in Table 7 and discussed in Section 5.2, after fine-tuning, nearly all
saliency prediction models get better performance on our VAFA database. Moreover, CASNet fine-
tuned based on our database looks better across all criteria. Therefore, to illustrate that our pro-
posed method has better performance, we further compare the results of our proposed method
and the results of the fine-tuned CASNet.

We adopt a 10-fold cross-validation method to evaluate the performance of CASNet, fine-tuned
CASNet, and our proposed method. In each run of cross-validation, we randomly select 240 images
from the VAFA database as the training set and the other 60 images as the testing set. We fine-tune
the model for 100 epochs on the training set. Then we calculate the performance of CASNet, fine-
tuned CASNet, and our proposed method on the testing set. Table 8 lists the averaged performance
after 10-fold cross-validation. The best performance under each criterion is highlighted in bold. As
shown in the table, our proposed method has the best performance under almost all criteria. In par-
ticular, for three similarity metrics, which are CC, NSS, and SIM, our proposed method has a great
improvement in performance. Figure 11 illustrates the saliency map of all models. Apparently, most
models have improvements in performance after fine-tuning and our proposed method appears to
perform best. For example, for the image in the fifth column, the expression of the face is anger.
In the visual attention map of individuals with ASD, the mouth region is the most salient area, but
no similar phenomenon shows for healthy controls. In the output saliency map of our proposed
method, mouth regions are more emphasized compared to other methods. Carefully comparing
the output saliency map of our proposed method and visual the attention map of individuals with
ASD, we find that our method is very robust. However, possible failure or less accurate results
may happen when the expressions on human faces are strange or the background of the image is
complex.

5.4 Further Discussion

Our article only focuses on the still images; studies about the visual attention on videos may con-
tribute more discoveries for the reason that videos have temporal information. With dynamic face
stimuli, the visual behaviors of individuals with ASD may have differences with that on still stimuli.
The visual attention of individuals with ASD may have more differences with healthy controls as
the variation of continuous facial motion. Predicting the visual attention of individuals with ASD
on dynamic human faces may be more significant. This is another interesting research direction.

6 CONCLUSION

In this article, we analyze and predict the visual attention on human faces for the children with
ASD. We first construct a Visual Attention on Faces for Autism Spectrum Disorder (VAFA) data-
base. Based on the database, we analyze the differences of the visual attention between people with
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Fig. 11. Saliency map of sample images. The first row: sample images. The second row: visual attention map
of people with ASD. The third row: visual attention map of TD people. The 4th row to the 15th row: saliency
map calculated from the original and fine-tuned models. The 16th row: saliency map calculated from our
proposed model.
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ASD and healthy people. Four factors are found to make a difference, which are facial proportion
in images, facial features, face pose, and facial expressions, respectively. Based on the differences,
we propose to extract atypical features for ASD, and integrate these feature maps adaptively with
features extracted from the CASNet. After fine-tuning, our proposed method could get the best
performance. Learning to predict the visual attention of children with ASD contributes to related
research in the field of medical science, psychology, and education. This research also has many
application scenarios. With the help of our proposed model, we could design specialized education
contents with human faces for the children with ASD. And this study could also contribute to the
related research on rapid screening for ASD.
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