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Abstract—With the development of multimedia technology,
Augmented Reality (AR) has become a promising next-generation
mobile platform. In order to acquire better AR mobile streaming
experience, it is significant to study the evaluation of Quality
of Experience (QoE) in AR. The primary value of AR is to
promote the fusion of digital contents and real-world envi-
ronments, however, studies on how this fusion will influence
the Quality of Experience (QoE) of these two components are
lacking. To achieve better QoE of AR, whose two layers are
influenced by each other, it is important to evaluate its perceptual
quality first. In this paper, we consider AR technologies as the
superimposition of virtual scenes and real scenes, and introduce
visual confusion as its basic theory. We first establish an ARIQA
database to better simulate the real AR application scenarios,
which contains 20 AR reference images, 20 background (BG)
reference images, and 560 distorted images generated from AR
and BG references by mixing reference images in pairs, as well
as the correspondingly collected subjective quality ratings. We
also design three types of full-reference (FR) IQA metrics to
study whether we should consider the visual confusion when
designing corresponding IQA algorithms. An ARIQA metric is
finally proposed for better evaluating the perceptual quality of
AR images. The dataset, benchmark study and proposed metric
will be released to facilitate the future studies related to AR QoE
assessment and AR communication.

Index Terms—Subjective evaluation techniques, objective eval-
uation techniques, quality of Experience, Augmented Reality
(AR), visual confusion

I. INTRODUCTION

With the evolution of multimedia technology, the next-
generation display technologies aim at revolutionizing the
way of interactions between users and their surrounding
environment rather than limiting to flat panels that are just
placed in front of users (i.e., mobile phone, computer, etc.)
[1], [2]. These technologies, including Virtual Reality (VR),
Augmented Reality (AR), and Mixed Reality (MR), etc., have
been developing rapidly in recent years. Among them, AR
pursues high-quality see-through performance and enriches
the real world by superimposing digital contents on it, which
is promising to become the next-generation mobile platform.
With advanced experience, AR shows great potential in several
attractive application scenarios, including but not limited to
communication, entertainment, health care, education, engi-
neering design, etc.

* Equal contribution.
§ Corresponding author.
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Fig. 1. Augmented Reality image quality assessment can be used for
optimizing local display, local streaming (AR contents provided by local
real-world), and global streaming (AR contents provided by remote server).
Note that real-world scenes and AR contents can be displayed binocularly (in
this figure) or monocularly (in Fig. 2), we mainly consider monocular visual
confusion in this paper.

On account of the complex application scenes, it is im-
portant to study the perceptual Quality of Experience (QoE)
of AR, which can help better optimize local display, local
streaming, and global streaming of mobile AR as shown in Fig.
1. Lately, some works have been presented to study the quality
effects of typical degradations that affect digital contents in
AR [3], [4]. These studies have performed subjective/objective
tests on screen displays via showing videos of 3D meshes
or point clouds with various distortions. Moreover, with the
development of Head Mounted Displays (HMDs) for AR
applications, some studies have considered evaluating the QoE
of 3D objects using these devices. However, all these studies
only focus on the degradations of geometry and texture of 3D
meshes and point clouds inside AR, e.g., noise, compression
etc., their see-through scenes are either blank or simple texture,
or even without see-through scenes (opaque images/objects).
The studies discussing the relationship between augmented
view and see-through view are lacking.

To address the above issues, in this paper, we consider AR
technology as the superimposition of digital contents and see-
through contents, and introduce visual confusion [5], [6] as
its basic theory. Although the digital contents can enrich the
information of real world scene and bring much convenience,
the superimposition may degrade the quality of AR contents
or occlude the real world scene. Thus, it is important to study
the IQA for AR contents and further use it for improving the
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(a) Demonstration of the simulation (b) Omnidirectional image (c) AR image (d) Perceptual viewport

Fig. 2. The illustration of the AR simulation in VR environment. (a) The demonstration of the relationship between the omnidirectional image, the AR image,
and the perceptual viewport image. (b) The omnidirectional images are used as the background scenes, which include outdoor and indoor scenarios. (c) The
AR images are composed of three types of content including web page images, natural images, and graphic images. (d) The perceptual viewport images are
generated by superimposing the AR images on the omnidirectional images (here λ = 0.58). Note that the perceptual viewports of the subjects are changed
dynamically with the head movement, however, the relative positional relationship between the omnidirectional image and the AR image is fixed.

QoE of AR. To this end, in this work, we conduct the first
subjective and objective ARIQA study based on the visual
confusion theory.

An Augmented Reality Image Quality Assessment
(ARIQA) dataset is established to make up for the absence of
relevant research. An intuitive way to conduct subjective AR
experiment is wearing AR devices in various environments and
then collecting subjective scores. However, this way suffers
from uncontrollable experimental environments and limited
experimental scenarios. Moreover, A big TV screen cannot
provide immersive experience and enough field-of-view for the
background image. Thus, we innovatively propose to conduct
the ARIQA study in VR environment. Specifically, we first
collect 20 raw omnidirectional images as background images,
and 20 common images (including graphic images, natural
images, and webpage images) as reference images. Then 20
background images (omnidirectional images) and 20 reference
AR images are randomly combined in 20 background-AR
(B-A) pairs. Four mixing levels are introduced as the visual
confusion distortion for these 20 pairs during the experiment.
Besides the visual confusion distortion as mentioned above,
we further introduce three types of distortions to AR images
including JPEG compression, image scaling and contrast
adjustment to AR contents, and each of these distortions has
two levels. Finally, we generate 560 B-A pairs as the test
stimuli (20 scenarios× 7 levels× 4 mixing values).

We also design three types of objective AR-IQA benchmark
models, which can be differentiated according to the inputs of
the classical IQA models, to study whether and how the visual
confusion should be considered when designing corresponding
IQA metrics. Based on the ARIQA dataset and the benchmark
models, we further analyze several visual characteristics of
visual confusion and propose an attention based deep feature
fusion method towards better evaluating the quality of super-
imposed images. Specifically, the attention based deep feature
fusion model is established based on LPIPS [7], we subtract
the DNN features extracted from a superimposed image and

the corresponding AR image, as well as the DNN features
extracted from the superimposed image and the background
image respectively, as two feature distance vectors. Then
these two feature distance vectors are fed into a channel
attention module and a spatial attention module to further
refine the feature vectors. For training efficiency, the spatial
attention module is a modified and frozen saliency prediction
model. Finally, these two feature distance vectors are fed
into an average pooling layer and subtracted to get the final
quality score. A specialized learning strategy is also proposed.
Specifically, two superimposed images and corresponding AR,
background images are fed into two aforementioned attention
based deep feature fusion model respectively to obtain two
quality scores of these two contents, and by calculating the
loss function between the subtraction of these two scores and
the ground-truth subtraction, the relative quality comparison
can be learned by the network.

The rest of this paper is organized as follows. Section II
introduces the subjective ARIQA methodology. In Section
III, we presents the benchmark methods and our proposed
ARIQA model. The results are given in Section IV. Section
V concludes the whole paper.

II. SUBJECTIVE ARIQA METHODOLOGY

A. Subjective Experiment Methodology.

An intuitive way to conduct subjective AR experiment is
wearing AR devices in various environments and then collect-
ing subjective scores. However, this way suffers from uncon-
trollable experimental environments and limited experimental
scenarios [8], e.g., the head movement may cause different
collected background images for different users, and it is hard
to introduce various background scenarios in lab environment.
Therefore, we adopt the method of conducting subjective AR-
IQA studies in VR environment for controllable experimental
environments and diverse experimental scenarios.

Fig. 2 illustrates the methodology of the subjective exper-
iment in this ARIQA study. First of all, 20 omnidirectional
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Fig. 3. Distribution of MOS values of raw images, JPEG compressed
images, rescaled images superimposed on the omnidirectional backgrounds
with different mixing values. The mixing values λ1, λ2, λ3, λ4 are equal to
0.26, 0.42, 0.58, 0.74, respectively.
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Fig. 4. Samples of MOS values of raw images, contrast adjusted images
superimposed on the omnidirectional backgrounds with different mixing
values. “N” denotes negative gamma transfer, “P” represents positive gamma
transfer.

images are collected as the background scenes including 10
indoor scenarios and 10 outdoor scenarios. Considering the
real applications of AR, we further collect 20 images as the
reference AR contents, which include 8 web page images, 8
natural images, and 4 graphic images. The resolution of all
raw AR images is 1440 × 900. We generate a much larger
set of distorted AR contents by applying quality degrada-
tion processes that would occur in AR applications. Three
distortion types including image compression, image scaling,
image contrast adjustment, are introduced as follows. 1) JPEG
compression. We set the quality level of the JPEG compression
at the two levels with quality parameters 7 and 3. 2) Image
scaling. We create distorted images by downsclaing original
images to 1/5 and 1/10 of the original resolution, then spatially
upscaling them back to the original resolution. 3) Image
contrast adjustment. We use the gamma transfer function [9] to
adjust the contrast, which is defined as y = [x ·255((1/n)−1)]n,
where n = [1/4, 4] (n < 1 is negative gamma transfer, n > 1
is positive gamma transfer). Hence, for each AR image, we
generate 6 degraded images.

For simulating AR scenarios, we first randomly match the
20 AR images and 20 omnidirectional images in pairs to
generate 20 scenarios. Hence, for each omnidirectional image,
we have 7 AR images superimposed on it (1 reference image
+ 6 distorted images). During the experiment, the perceptual
viewport can be formulated as:

IS = λ ◦ IA + (1− λ) ◦ IO , (1)

where IS denotes the perceptual viewport, i.e., the super-
imposed image, IA represents the AR image, IO indicates
the omnidirectional image, and λ ∈ [0.26, 0.42, 0.58, 0.74]
denotes the mixing value used in the experiment, i.e., we
have four superimposing levels in this subjective experiment.
Overall, 560 experimental stimuli are generated for conduct-
ing the subjective experiment (20 scenarios × 7 levels ×
4 mixing values). As demonstrated in Fig. 2 (a), the
omnidirectional image is displayed in 360 degrees as the
background scenarios, the AR image is superimposed on the
omnidirectional image which is perceived as the perceptual
viewport. Fig. 2 (b), (c) and (d) present the examples of the
omnidirectional images, the AR images, and the perceptual
viewport images, respectively.

A total of 23 subjects participate in the experiment. Since
the experiment is conducted under VR-HMD environment,
the single-stimulus (SS) strategy is adopted to collect the
subjective quality ratings of AR images. A 10-point numerical
categorical rating method is used to facilitate the subjective
rating in HMD [10]. We use HTC VIVE Pro Eye [11] as the
HMD on account of its excellent graphics display technology
and high precision tracking ability. During the formal test, all
560 experimental stimuli are displayed in a random order for
each subject. We then process the collected subjective scores
to obtain the mean opinion scores (MOSs).

B. Subjective Data Analysis.

We analyze the distribution of MOS values across different
mixing values and various distortions. Fig. 3 shows the MOS
distribution of the images with the degradations of JPEG
compression and image scaling under different mixing values.
We notice that as the λ value increases, the MOS value also
shows an overall upward trend, of which the reason is apparent
since larger λ value means clearer AR content. Moreover,
for the superimposed AR images with JPEG compression
and scaling, we notice that when the mixing value λ is
relatively smaller, the MOSs of these images are closer to
that of superimposed raw images, though the overall MOSs
are smaller than that of the larger λ values. Fig. 4 plots
several examples of the MOS values of raw images and
contrast adjusted images superimposed on the omnidirectional
backgrounds with different mixing values, which shows that
appropriate contrast adjustment may even improve the percep-
tual quality of AR contents.

III. OBJECTIVE ARIQA MODEL

A. Benchmark Method

Three variants are introduced in the benchmark study. We
assume the background image, the AR image, as well as the
mixing value are known, which can be acquired in real appli-
cations, and the superimposed image can be correspondingly
calculated. Let IAD

denotes the AR image with distortions,
IAR

denotes the raw reference AR image, IB indicates the
background image, λ represents the mixing value, hence, the
displayed AR image IA and the perceptual viewport image
(superimposed image) IS can be correspondingly expressed as:
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are three extracted feature vectors, respectively. We first compute the feature distance between
the corresponding feature layers of the distorted image and two reference images. Then each feature distance vector is fed into a specially designed channel
attention module and a one dimensional feature map is output. After weighting by a spatial attention operation, the predicted score is computed.
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Fig. 6. The framework of the proposed ARIQA model.

IA = λ·IAD
, and IS = λ·IAD

+(1−λ)·IB , respectively. Then,
three FR-IQA variants of AR IQA metrics are defined as: Type
I, the similarity between the displayed AR image IA and the
reference AR image IAR

; Type II, the similarity between the
perceptual viewport image IS and the reference AR image
IAR

; Type III, the SVR fusion [12] of the similarity between
the perceptual viewport image IS and the reference AR image
IAR

, and the similarity between the perceptual viewport image
IS and the background image IB . These three variant types
can be expressed as:

QType I = FR(IA, IAR
), (2)

QType II = FR(IS , IAR
), (3)

QType III = SVR(FR(IS , IAR
),FR(IS , IB)), (4)

where QType I, QType II, and QType III denote the quality predic-
tions of the three variants, SVR indicates the support vector
regression deployment.

B. Attention Based Deep Feature Fusion Method (CFIQA)

We first introduce an attention based deep feature fusion
method for confusing image quality assessment (CFIQA) as
shown in Fig. 5.

Deep feature extraction and feature distance calculation.
We first employ several state-of-the-art pre-trained DNNs to
extract both low-level and high-level features, which include
SqueezeNet [13], AlexNet [14], VGG Net [15], and ResNet
[16]. Then, for a distorted image ID and corresponding two
reference images IR1 , IR2 , we extract feature stacks fD, fR1 ,
and fR2 from L layers of a network F , respectively. Then we
follow the method in [7] and calculate the feature distance
between the distorted image and the reference image by
subtracting normalized feature stacks. This can be expressed
as:

f l
di

=
∥∥ f l

D − f l
Ri

∥∥2
2
, (5)

where l ∈ [1, L] represents the l-th layer, i ∈ {1, 2} denotes
the reference category, f l

di
is the calculated feature distance.

Channel attention for learning feature significance. Since
the significance of each channel of the feature distance vector
is uncertain for this task, it is important to learn the weights of
the channels for each feature distance vector and re-organize
them. We adopt a widely used channel attention [30] method
as shown in Fig. 5 to learn and re-organize features. After
the channel attention, two down-sampling convolutional layers
are followed. The kernel size of all convolutional layers is
1. Through this manipulation, a 2D feature stack di which
represents the distance map can be obtained for fdi , where
i ∈ {1, 2}.

Spatial attention. Since high-level visual features such
as saliency may influence the perceptual quality of visual
confusion. Since it is hard to optimize spatial attention with
a relatively small dataset, in this work, we calculate spatial
attention by a saliency prediction method. A state-of-the-
art saliency prediction method [31] is used to to calculate
the spatial attention map Wi for a reference image IRi

. By
weighting the distance map di with a scaled spatial attention

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 01,2022 at 12:32:48 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
PERFORMANCE OF THE THREE VARIANTS OF THE STATE-OF-THE-ART FR-IQA MODELS ON THE ARIQA DATASET. THE TOP 3 RESULTS OF ALL THREE
VARIANTS ARE IN BOLD FOR EACH GROUP. THE PERFORMANCE CHANGES COMPARED TO TYPE I IN TERMS OF SRCC ARE INDICATED IN GRAY FONTS

Method Type I Type II Type III
Model \ Criteria SRCC↑ KRCC↑ PLCC↑ RMSE↓ SRCC↑ KRCC↑ PLCC↑ RMSE↓ SRCC↑ KRCC↑ PLCC↑ RMSE↓

PSNR 0.2197 0.1485 0.2742 12.733 0.0064 (−0.2133) 0.0027 0.0592 13.217 0.3809 (+0.1612) 0.2662 0.4154 11.901
NQM [17] 0.4101 0.2813 0.4268 11.974 0.5348 (+0.1247) 0.3772 0.5550 11.014 0.5588 (+0.1487) 0.4031 0.5867 10.677
MS-SSIM [18] 0.6118 0.4414 0.6483 10.080 0.6557 (+0.0439) 0.4778 0.6609 9.9366 0.6660 (+0.0541) 0.4914 0.6741 9.6721
SSIM [19] 0.5327 0.3799 0.5551 11.013 0.5399 (+0.0072) 0.3797 0.5411 11.134 0.6090 (+0.0763) 0.4430 0.6233 10.276
IFC [20] 0.3539 0.2456 0.3294 12.501 0.5121 (+0.1582) 0.3523 0.5105 11.385 0.5090 (+0.1551) 0.3601 0.5217 11.172
VIF [21] 0.5981 0.4273 0.6366 10.211 0.6927 (+0.0946) 0.5009 0.6869 9.6218 0.7227 (+0.1245) 0.5351 0.7222 9.2024
IW-MSE [22] 0.2287 0.1555 0.2966 12.644 0.2406 (+0.0119) 0.1689 0.2956 12.648 0.4126 (+0.1839) 0.2906 0.4586 11.693
IW-PSNR [22] 0.2287 0.1555 0.2998 12.631 0.2406 (+0.0119) 0.1689 0.2895 12.673 0.3559 (+0.1272) 0.2574 0.4151 11.879
IW-SSIM [22] 0.6431 0.4663 0.6532 10.026 0.7103 (+0.0672) 0.5267 0.7100 9.3231 0.7116 (+0.0685) 0.5337 0.7201 9.0193
FSIM [23] 0.6323 0.4546 0.6723 9.8010 0.6538 (+0.0215) 0.4716 0.6528 10.029 0.6663 (+0.0340) 0.4865 0.6774 9.5764
GSI [24] 0.4393 0.3046 0.5034 11.440 0.3788 (−0.0605) 0.2606 0.3890 12.197 0.4245 (−0.0147) 0.3056 0.4584 11.680
GMSD [25] 0.6485 0.4718 0.6759 9.7575 0.5947 (−0.0537) 0.4346 0.5959 10.633 0.6730 (+0.0245) 0.4973 0.6801 9.5815
GMSM [25] 0.6386 0.4628 0.6907 9.5745 0.5863 (−0.0523) 0.4142 0.5923 10.667 0.6294 (−0.0092) 0.4587 0.6422 10.064
PAMSE [26] 0.2162 0.1458 0.2736 12.735 0.0090 (−0.2072) 0.0048 0.0659 13.211 0.3657 (+0.1495) 0.2558 0.4093 11.941
LTG [27] 0.6592 0.4830 0.6826 9.6759 0.6469 (−0.0123) 0.4742 0.6422 10.150 0.6764 (+0.0172) 0.4998 0.6818 9.4727
VSI [28] 0.5190 0.3691 0.5926 10.665 0.6096 (+0.0906) 0.4318 0.6167 10.422 0.6321 (+0.1131) 0.4590 0.6484 10.039

LPIPS (Squeeze) [7] 0.5924 0.4326 0.6160 10.430 0.6260 (+0.0336) 0.4450 0.6251 10.334 0.6417 (+0.0494) 0.4693 0.6660 9.8086
LPIPS (Alex) [7] 0.5870 0.4273 0.6314 10.267 0.6306 (+0.0436) 0.4457 0.6352 10.226 0.6626 (+0.0757) 0.4820 0.6767 9.6071
LPIPS (VGG) [7] 0.5436 0.3828 0.5593 10.975 0.6202 (+0.0766) 0.4426 0.6141 10.450 0.6373 (+0.0936) 0.4606 0.6475 9.9848
DISTS [29] 0.5011 0.3583 0.5280 11.244 0.5112 (+0.0101) 0.3627 0.5528 11.033 0.6334 (+0.1323) 0.4608 0.6580 9.7866
Baseline (SqueezeNet) 0.5733 0.4166 0.6096 10.496 0.6339 (+0.0606) 0.4570 0.6358 10.220 0.6272 (+0.0539) 0.4573 0.6493 9.8747
Baseline (AlexNet) 0.5273 0.3776 0.5814 10.772 0.6450 (+0.1177) 0.4690 0.6578 9.9728 0.6460 (+0.1187) 0.4768 0.6707 9.7499
Baseline (VGG-16) 0.5541 0.3908 0.5706 10.873 0.6368 (+0.0827) 0.4585 0.6372 10.204 0.6587 (+0.1046) 0.4805 0.6622 9.8906
Baseline (VGG-19) 0.5612 0.3981 0.5790 10.795 0.6561 (+0.0949) 0.4750 0.6530 10.028 0.6613 (+0.1001) 0.4838 0.6674 9.6720
Baseline (ResNet-18) 0.5438 0.3892 0.5750 10.832 0.6467 (+0.1029) 0.4678 0.6451 10.117 0.6485 (+0.1047) 0.4779 0.6702 9.7504
Baseline (ResNet-34) 0.5426 0.3862 0.5771 10.813 0.6603 (+0.1177) 0.4782 0.6660 9.8765 0.6710 (+0.1284) 0.4959 0.6903 9.4826
Baseline (ResNet-50) 0.5753 0.4113 0.5977 10.615 0.6510 (+0.0757) 0.4688 0.6464 10.102 0.6619 (+0.0866) 0.4831 0.6736 9.7163

TABLE II
PERFORMANCE OF FOUR TRAINABLE MODELS.

Model \ Criteria SRCC↑ KRCC↑ PLCC↑ RMSE↓

modified LPIPS [7] 0.7624 0.5756 0.7591 8.6935
CFIQA (Ours) 0.7787 0.5863 0.7695 8.5484
ARIQA (Ours) 0.7902 0.5967 0.7824 8.3295

ARIQA+ (Ours) 0.8124 0.6184 0.8136 7.8018

map Wi, the final quality score can be predicted as:

si = Avg
l
(

∑
h,w W l

i hw ⊙ dlihw∑
h,w W l

i hw

) . (6)

C. ARIQA Model

Based on the aforementioned CFIQA, we further improve
the learning strategy of CFIQA by comparing the quality of
two homologous superimposed images as demonstrated in Fig-
ure 6. Considering the effectiveness of the training objectives
of the LPIPS [7], during the training process, two pathways
are introduced to ARIQA for comparing the perceptual quality
of different distorted images of the one AR and background
reference pair. The edges of objects can help identify their
categories [32]. However, when two images are superimposed
together, the intersection of the edges of two image layers
may strongly influence the perceptual quality. Therefore, we
further extract the features from an edge detection model [32]
and concatenate them with the features extracted from one of
the aforementioned classification backbones as an enhanced
model, which is named ARIQA+.

IV. EXPERIMENTAL VALIDATION

Benchmark experiments. In terms of our ARIQA dataset,
the background image IB (i.e., viewport of the omnidirectional
image IO) and the superimposed image IS are captured in
Unity, then the benchmark results are calculated using the
aforementioned methods. Table I presents the performance of
the three benchmark AR-IQA metric variants derived from
the state-of-the-art FR-IQA models on the ARIQA dataset.
Comparing Type I and Type II, we notice that for most FR-
IQA metrics, using superimposed images as distorted images
can improve the performance of the algorithm. In addition, as
shown in the comparison between Type III and Type I, when
superimposed images, AR images, as well as background
images are jointly considered, the performance of almost all
FR-IQA metrics can be further improved.

ARIQA model performance. We conduct a five-fold cross
validation experiment on the ARIQA dataset. For each fold, we
split the 560 samples into 280 training samples and 280 testing
samples without scene repeating, i.e., 280 training samples
and 280 testing samples corresponding to different 10 AR/BG
pairs, respectively. For fair comparison, we further re-train
the LPIPS and CFIQA models only using AR image as the
reference image, which is similar to the concept of Type II
described above. Table II shows the averaged performance of
these four models after five-fold cross validation. It can be
observed that the ARIQA model achieves better performance
than the LPIPS model and the CFIQA model, and the ARIQA+
achieves the best performance compared to other models.
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V. CONCLUSION

In this paper, we discuss visual confusion theory underlying
AR technologies, and conduct a subjective ARIQA study and
an objective ARIQA study based on the visual confusion the-
ory. To better study the IQA problem of AR, we first build an
augmented reality image quality assessment (ARIQA) dataset,
and conduct a subjective image quality assessment study based
on it. Three benchmark models are presented for this problem.
An ARIQA model is also proposed for better evaluating the
perceptual quality of AR images. The results show that it is
beneficial to consider visual confusion when designing IQA
models for AR, and our proposed ARIQA model achieves
better performance compared to other state-of-the-art methods.
We hope this work can help other researchers to have a better
understanding of the visual confusion mechanism underlying
AR technology and can contribute to design and optimize AR
broadband/broadcast systems.
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