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Abstract—Image quality assessment (IQA) is very important
for both end-users and service-providers since a high-quality
image can significantly improve the user’s quality of experience
(QoE). Most existing blind image quality assessment (BIQA)
models were developed for synthetically distorted images, how-
ever, they perform poorly on in-the-wild images, which are
widely existed in various practical applications. In this paper,
inspired by perceptual visual quality being affected by both
low-level visual features and high-level semantic information,
we propose an effective BIQA model for in-the-wild images by
considering rich features extracted from the convolution neural
network (CNN). Specifically, we propose a staircase structure to
hierarchically integrate the features from intermediate layers of
the CNN into the quality-aware feature representation, which
enables the model to make full use of visual information from
low-level to high-level and are more suitable for the in-the-wild
IQA task. Experimental results show that the proposed model
outperforms other state-of-the-art BIQA models on six in-the-
wild IQA databases by a large margin. Moreover, the proposed
model is flexible and can be replaced with popular CNN models
to meet the various needs of practical applications.

Index Terms—objective evaluation techniques, quality of ex-
perience, blind image quality assessment, in-the-wild images,
convolution neural network, feature fusion

I. INTRODUCTION

With the advent of the mobile era, billions of images are
generated in various social media applications every day, most
of which are captured by amateur users in various in-the-wild
environments. Different from pictures shot by photographers,
the quality of ordinary-user-generated images is often de-
graded by distortions like under/over exposure, low visibility,
motion blur, ghosting, etc. A high-quality image can improve
the viewer’s Quality of Experience (QoE) and also benefit lots
of computer vision algorithms. With massive images being
generated every moment, there is an urgent need to develop a
quality assessment model for in-the-wild images.

Due to the lack of pristine images, only blind image quality
assessment (BIQA) models are qualified for evaluating the
quality of in-the-wild images. Previous BIQA models [1]–
[4] mainly focus on images with synthetic distortions such as
JPEG compression, Gaussian blur, etc. However, the difference
between images with authentic and synthetic distortions is
quite large. For example, synthetic distortions (e.g. JPEG
compression, White noise) are usually global uniform since
these distortions are introduced to the whole images uniformly,
while authentic distortions can be not only global uniform (e.g.
low illumination) but also non-uniform (e.g. object moving,
ghosting). We illustrate some examples of synthetically and

(a) JPEG Compression (b) White Noise

(c) Low Visibility (d) Motion Blur

Fig. 1. Images with synthetic distortions and authentic distortions. (a) and
(b) are synthetically distorted images, (c) and (d) are authentically distorted
images.

authentically distorted images in Fig. 1. Though existing BIQA
models [1]–[5] have achieved remarkable performance on
synthetically distorted images, there is still a great challenge
to assess the quality of in-the-wild images.

Existing BIQA models generally follow such routine: 1) ex-
tracting quality-aware features, and 2) mapping these features
into quality scores via a regression model. Commonly used
quality-aware features include natural scene statistics (NSS)
features [1], [2], free energy features [3], [4], corners/textures
[5], etc., while commonly used regression models include
support vector regression, random forest regression, etc. For
example, DIIVINE [1] first identifies the distortion type of
the image, and then conducts distortion-specific IQA using
NSS features extracted in the wavelet domain. BRISQUE [2]
uses the scene statistics of local luminance coefficients to
quantify possible losses of “naturalness”. Gu et al. [3] develop
a NR free energy based robust metric (NFERM) using three
groups of features: features extracted by the free energy model,
image structure and gradient features, and NSS features of the
mean subtracted contrast normalized coefficients. Min et al.
[5] integrate the similarities of corners and local binary pat-
terns between distorted images and the corresponding pseudo
images as the quality score, where the pseudo images can be
in multiple distortion levels.

Recently, deep learning technologies show great ability to
solve various visual signal problems. Latest BIQA models
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Fig. 2. The network architecture of the proposed model. The proposed model includes the staircase network for quality-aware feature extraction and image
quality regressors for mapping the quality-aware features to the quality score.

adopt the deep learning based architecture, which utilizes
a convolutional neural network (CNN) to extract quality-
aware features of distorted images and then regresses them
to quality scores with a fully connected network. This kind of
architecture allows it to be trained in an end-to-end manner
and has been dominant in the BIQA fields. For example,
Kang et al. [6] use a shallow CNN model consisting of
one convolutional layer and two fully connected layers to
estimate the quality of small patches, and then the image level
quality score is averaged by the predicted patch scores of the
corresponding image. Bosse et al. [7] further deepen the CNN
model by jointly learning the quality and weight of patches,
where the weight is the relative importance of the patch quality
to the global quality estimation. Zhang et al. [8] propose to
merge features extracted from two kinds of CNN models into
a better representation by bilinearly pooling, where two CNN
are respectively pretrained on the distortion type and level
classification task and the image classification task. Su et al.
[9] develop a self-adaptive hyper network to aggregate local
distortion features and global semantic features.

Compared with handcrafted features, features extracted by
CNN are more powerful and more suitable for in-the-wild
images. However, the commonly used backbone networks such
as VGG [10], Resnet [11], etc. are designed for the image
classification task, where extracted features are at the semantic
level, but perceptual visual quality is also affected by low-level
visual features. So, it is not an optimal option to directly use
a popular CNN architecture as the backbone of BIQA tasks.

Therefore, in this paper, we propose a novel BIQA model
for in-the-wild images by considering the rich features ex-
tracted from the CNN model. First, we propose a staircase
structure to hierarchically incorporate the features from inter-
mediate layers of the CNN into the final feature representation,

which makes the model learn more effective quality-aware
features. Previous studies [12], [13] indicate that the features
extracted from different stages of a CNN model represent
different visual information. For example, the features ex-
tracted from bottom convolution layers correspond to low-
level information such as edges and corners, while the features
extracted from top convolution layers are at the semantic
level. Through fusing the features from intermediate layers,
the CNN model can fully utilize the visual information from
low-level to high-level and learn the better feature repre-
sentations for quality evaluation. Then, we utilize the fully
connected layer to map the quality-aware features into the
quality score. Experimental results show that the proposed
model achieves the best performance on six in-the-wild IQA
databases, and also achieves an excellent performance in the
cross-database evaluation, which demonstrate the effectiveness
and generalizability of the proposed model. What’s more, the
proposed staircase structure is flexible and can be replaced
with popular CNN models to meet the various needs of
practical applications.

The rest of this paper is organized as follows. Section
II describes the proposed model in detail. In Section III,
we give the results of the proposed model and compare
the performance with other popular BIQA models on six
benchmark IQA databases. Section IV gives the concluding
remarks.

II. PROPOSED METHOD

In this section, we describe the proposed method in detail. A
diagram of the network structure is illustrated in Fig. 2, which
includes two parts, a staircase network for more effective and
powerful feature representation and image quality regressors
for mapping the quality-aware features to quality score spaces.
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A. Staircase Network for Feature Extraction

Many successful CNN models such as VGG [10], ResNet
[11] follow the same design paradigm, which gradually reduce
the dimension of feature maps and increase the number of
feature maps at the same time. This kind of architecture allows
the CNN model to learn features from low-level to high-
level as the number of network layers deepen, and achieves
promising performance in many computer vision tasks such
as image recognition [10], [11], [14], object detection [15],
image segmentation [16], etc. However, the perceived quality
of images is affected by both the low-level visual features
and high-level semantic information [17] [18] [19]. It is not
optimal to directly use the popular CNN model as the feature
extraction module due to the loss of low-level features. Here,
we propose the staircase structure to hierarchically integrate
the features extracted from intermediate layers, so the model
can make full use of features extracted from low-level to high-
level visual information.

Generally, the popular CNN architectures can be divided
into several stages according to the dimension of feature maps.
In each stage, there are several convolutional layers in series
to deepen the network. Assume that there are Ns stages, and
Fi is the feature map extracted from the i-th stage, where i ∈
[1, 2, ..., Ns]. Since we want to integrate the features extracted
from each stage into the final feature representation, a simple
method is to fuse the feature maps by element-wise addition
operators, i.e.

F =

Ns∑
i=1

Fi. (1)

However, there are two problems if we directly use Eq. (1) as
the feature fusion method.

First, it is observed that the number of channels and the
dimension of feature maps in each stage are not the same.
Generally speaking, the dimension of the feature maps at
the current stage is half that of the previous stage while the
number of channels is twice that of the previous stage. So,
it is impossible to add the feature maps from different stages
directly. In order to make the number of channels and the
dimension of feature maps at different stages the same, we
introduce a bottleneck structure consisting of three convolution
operations to downscale the dimension and increase the chan-
nels. Specifically, we first reduce the channels of feature map
Fi to a quarter through the 1×1 convolution layer to decrease
the computation complexities of the whole procedures. Then
we utilize the 3×3 convolution layer with a stride of 2 to
reduce the resolution of Fi to half. Finally, Fi is passed
through the 1×1 convolution layer to increase the number of
channels for eight times. After that, the feature map F̃i can
be represented as:

F̃i = W1×1W3×3W1×1Fi = WFi, (2)

where W1×1 and W3×3 are the weight matrices of the 1×1
convolution layer and the 3×3 convolution layer respectively,

and W is the product of W1×1 and W3×3 . Then, we can
directly add feature maps from different stages:

F =

Ns−1∑
i=1

(

Ns−1∏
j=i

Wij)Fi + FNs
, (3)

where Wij means the j-th weight matrix for the feature map
Fi.

Second, we notice that adding the features from lower layers
to the final stage directly will cause the whole network difficult
to train. For example, if we use a short connection (include
downscaling and channel maps adding operators) to add the
features in Stage 1 to the features in Stage Ns, it will make
the backward propagated gradients tend to pass through the
short connection while ignoring the backbone network during
training. As a result, it is hard to train the backbone network
to extract deep semantic features. Therefore, we propose to
hierarchically merge feature maps from different stages to
avoid this problem. More specifically, for the feature map F1

from Stage 1, we first downscale its resolution and increase
its channels by two convolution layers to obtain F̃1. Then we
merge F̃1 with the feature map F2 via element-wise addition
and derive F̃ 2

1 . For F̃ 2
1 , we continue to reduce its resolution

and increase the channels, and then add it with the feature
maps F3 to derive F̃ 3

1 . The same operation is repeatedly
implemented until fusing F̃Ns−2

1 with the feature map FNs−1

to derive F̃Ns−1
1 , and F̃Ns−1

1 is the final feature map extracted
from Stage 1 that needs to be merged into final feature maps.
We then do similar operations for the feature maps from other
stages. These procedures can be formulated as:

F̃ j+1
i = WijF̃

j
i + Fj+1, (4)

where i ∈ [1, 2, .., Ns − 2], j ∈ [i, ..., Ns − 2], and F̃ i
i = Fi.

Finally, the quality-aware features extracted by the staircase
network are represented as:

F =

Ns−2∑
i=1

F̃Ns−1
i +WNs−1,nFNs−1 + FNs . (5)

B. Image Quality Regressor

After extracting quality-aware features by the staircase
network, we need to map these features to the quality scores
with a regression model. We first apply the global average
pooling (GAP) on the extracted feature maps to produce a
feature vector with a dimension of P × 1, where P is the
number of final feature maps. Then two Fully Connected (FC)
layers are used as the regression model to predict the image
quality. The two FC layers consist of 128 and 1 neurons
respectively. Finally, we can train the staircase network and
image quality regressor in an end-to-end training manner. The
Euclidean distance is used as the loss function:

L =‖ qpredict − qlabel ‖2, (6)

where qpredict is the quality score predicted by the proposed
model and qlabel is the ground-truth quality score derived from
subjective experiments.
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TABLE I
PERFORMANCE OF EIGHT STATE-OF-THE-ART METHODS AND THE PROPOSED MODEL ON SIX IN-THE-WILD IQA DATABASES. THE BEST PERFORMING

MODELS IN IQA CATEGORIES ARE HIGHLIGHTED IN EACH COLUMN.

Database CLIVE BID KonIQ-10k SPQA FLIVE FLIVE Patch
Criterion SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

NIQE [20] 0.4536 0.4676 0.4772 0.4713 0.5260 0.4745 0.6973 0.685 0.1048 0.1409 0.3211 0.2826
BRISQUE [2] 0.6005 0.6211 0.5736 0.5401 0.715 0.7016 0.8021 0.8056 0.3201 0.3561 0.5372 0.5843

BMPRI [5] 0.4868 0.5229 0.5154 0.4583 0.6577 0.6546 0.7501 0.7544 0.2737 0.3146 0.5839 0.6142
CNNIQA [6] 0.6269 0.6008 0.6163 0.6144 0.6852 0.6837 0.7959 0.7988 0.3059 0.2850 0.6005 0.5379

WaDIQaM-NR [7] 0.6916 0.7304 0.6526 0.6359 0.7294 0.7538 0.8397 0.8449 0.4346 0.4303 0.6995 0.7197
SFA [21] 0.8037 0.8213 0.8202 0.8253 0.8882 0.8966 0.9057 0.9069 0.5415 0.626 0.7175 0.7501

DB-CNN [8] 0.8443 0.8624 0.8450 0.8590 0.8780 0.8867 0.9099 0.9133 0.5537 0.6518 0.7509 0.7869
HyperIQA [9] 0.8546 0.8709 0.8544 0.8585 0.9075 0.9205 0.9155 0.9188 0.5354 0.6228 0.7489 0.7850

Proposed 0.8624 0.8821 0.8724 0.8830 0.9186 0.9346 0.9208 0.9245 0.5733 0.6756 0.7669 0.8009

III. EXPERIMENTAL VALIDATION

In this section, we first present the experimental protocol in
detail and then report the comparison results between the pro-
posed model and other state-of-the-art (SOTA) BIQA models
on six in-the-wild IQA databases. Then, the ablation studies
are conducted to validate the effectiveness of each module in
the proposed model. Finally, we test the generalizability of the
proposed model via cross-database evaluation.

A. Experimental Protocol

1) Test Database: The proposed method is mainly validated
on six in-the-wild IQA databases, CLIVE [22], BID [23],
KonIQ-10K [24], SPAQ [25], FLIVE [26], and FLIVE Patch
[26]. CLIVE consists of 1,162 images with diverse authentic
distortions captured by mobile devices. BID is a blur image
database that contains 586 images with realistic blur distortion
such as out-of-focus, motion blur, etc. KonIQ-10K contains
10,073 images selected from the large public multimedia
database YFCC100m, which covers a wide and uniform range
of distortions in terms of quality indicators such as brightness,
colorfulness, contrast, noise, sharpness, etc. SPAQ consists of
11,125 images taken by 66 kinds of mobile devices. These
images cover a large range of scene categories like animal,
human, plant, indoor scene, cityscape, landscape, night scene,
etc. FLIVE is the largest in-the-wild IQA database by far,
which contains about 40,000 real-world distorted images and
120,000 randomly cropped patches. We denote the latter as
the FLIVE Patch database.

2) Evaluation Criteria: Pearson linear correlation coeffi-
cient (PLCC) and Spearman rank-order correlation coeffi-
cient (SRCC) are adopted to evaluate the performance of
IQA models. These two criteria have different meanings for
demonstrating the performance of IQA models, of which
PLCC reflects the prediction linearity of the model and SRCC
indicates the prediction monotonicity.

3) Implementation Details: We use ResNet50 [11] as the
backbone of the staircase network. The weights of the back-
bone are initialized by training on ImageNet, and other weights
are randomly initialized. For the FLIVE and FLIVE Patch
databases, we use the same pre-processing method in [26] to

white fill images to the resolution of 340×340. For images
in other databases, we resize the resolution of the minimum
dimension of images as 380 while maintaining their aspect
ratios. In the training stage, the input images in the FLIVE
Patch database and other databases are randomly cropped with
resolutions of 224×224 and 320×320 respectively, and in the
testing stage, we crop the four corners and center patch with
the same resolution of 224×224 for images in the FLIVE
Patch database and 320×320 for images in other databases.
The quality score of each testing image is averaged by the
scores of five patches. The proposed model is implemented
in PyTorch. The Adam optimizer [27] with the initial learning
rate 0.00001 and batch size 30 is used for training the proposed
model on a server with NVIDIA GTX 2080Ti. All databases
are split into the training set with 80% distorted images and
the test set with 20% distorted images. We randomly split the
databases for 10 times, and report the median values of SRCC
and PLCC.

4) Compared Algorithms: We compare the proposed mod-
els with eight state-of-the-art BIQA models including hand-
crafted feature based BIQA models: NIQE [20], BRISUE
[2], and BMPRI [5], and deep learning based BIQA models:
CNNIQA [6], WaDIQaM-NR [7], SFA [21], DB-CNN [8], and
HyperIQA [9]. We retrained the compared models on the six
IQA databases for the fair comparison.

B. Performance Comparison with the SOTA Methods

The performance results on the in-the-wild databases are
summarized in Table I. From Table I, we first observe that the
proposed model achieves the best performance on all six in-
the-wild IQA databases and it leads by a significant margin,
which indicates that the proposed model has more powerful
representation abilities for the quality of in-the-wild images
than other deep learning based methods as well as handcraft
features based methods. Then all handcraft features based
models perform poorly on in-the-wild IQA databases, and
their performance is obviously lower than deep learning based
models, which reflects that handcraft features are difficult to
model the quality of images captured under various in-the-wild
environments. Third, other deep learning based models such
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TABLE II
THE PERFORMANCE OF MODELS WITH DIFFERENT CONVOLUTIONAL

PATHS ON THE KONIQ10K DATABASE. S IN THE FIRST ROW MEANS STAGE.

Convolutional Path S1 S2 S3 S4 SRCC PLCC
Path 1

√ √ √ √
0.9169 0.9324

Path 2 ×
√ √ √

0.9157 0.9328
Path 3 × ×

√ √
0.9146 0.9316

Path 4 × × ×
√

0.9128 0.9289
None × × × × 0.9100 0.9259

as HyperIQA and SFA also use ResNet50 as the backbone
for extracting features, but their performance is all inferior
to the proposed model, which indicates the superiority of the
staircase structure for improving the representation ability of
the model.

C. Ablation Experiment

1) Analyzing Features Extracted from Different Stages: In
this section, we train the backbone network (i.e. ResNet50)
with these four convolutional paths individually on the
KonIQ10k database to verify the contributions of features
extracted from different stages. We list the results in Table
III. First, when comparing the performances of Path4 to
Path1, we find the performance increases monotonously as
the features extracted from Stage4 to Stage1 are added in
sequence to the model, which indicates that the features
extracted from all stages make contributions to the overall
performance. Then, we observe that the performance gains of
Path3 to Path4 and Path4 to fusing no features are larger
than the performance gains of Path1 to Path2 and Path2 to
Path3, which means the features extracted from Stage3 and
Stage4 are more important to the image quality evaluation.
Finally, the performances of Path4 to Path1 are all inferior to
the proposed staircase structure, which indicates that combing
the fused features from these convolutional paths can further
improve the model’s performance.

2) The Effects of Different Backbones: In this section,
we test different backbones to show the effect of backbone
networks on the performance of the model. Specifically,
we train three CNN models, MobileNetV2 [28], ResNext50
[29], and ResNest50 [30] with the staircase structure on
the KonIQ10k database. MobileNetV2 is a lightweight CNN
model for mobile applications while ResNest and ResNext
are two more powerful CNN structures than ResNet. The
results are listed in Table III. From Table III, we observe
that the performances of ResNest50 and ResNext50 are both
superior to the ResNet50 though they have a similar number
of parameters. MobileNetV2 has ten times fewer parameters
than ResNet, but the SRCC value of Mobilenetv2 is only
0.0123 less than ResNet50. Therefore, the staircase structure
is a flexible and effective module for BIQA, which can be
integrated with popular CNN models, and we can choose the
corresponding model to meet requirements such as a greater
emphasis on high accuracy or faster running time.

TABLE III
THE PERFORMANCE OF DIFFERENT BACKBONES WITH THE STAIRCASE

STRUCTURE ON THE KONIQ10K DATABASE.

Backbones MobileNetV2 ResNet50 ResNext50 ResNest50
SRCC 0.9063 0.9186 0.9202 0.9228
PLCC 0.9235 0.9346 0.9363 0.9402

TABLE IV
SROCC EVALUATIONS ON CROSS DATABASE TESTS.

Training Testing DBCNN HyperIQA Proposed

KonIQ-10k
LIVEC 0.755 0.785 0.795

BID 0.816 0.819 0.813

BID
LIVEC 0.725 0.770 0.793

KonIQ-10k 0.724 0.688 0.734

D. Cross-Database Evaluation

In this section, we test the generalization ability of the
proposed model via cross-database evaluation. Specifically, we
choose KonIQ10k and BID as the training database because
KonIQ10k is a large and distortion-rich database, while BID is
a small and distortion-single database, so we can observe the
generalization ability of the proposed model in different ways.
Then we respectively test LIVEC, BID and LIVEC, KonIQ10k
on the two trained models. The two most competitive models
DBCNN and HyperNet are selected for comparison, and the
results are listed in Table IV. It is observed that among four
cross-database tests, the proposed model achieves three times
of top performance, and the other is very close to the compared
models, which demonstrates the strong generalization ability
of the proposed model.

IV. CONCLUSION

In this paper, we propose a new BIQA model for in-the-
wild images. The proposed model consists of two parts: the
staircase network for better quality-aware feature extraction
and the image quality regressor for mapping the quality-aware
features to the quality score. The staircase structure makes the
model integrate the features from intermediate layers into the
final feature representation, so the model can make full use of
visual information from low level to high level. Experimental
results show that the proposed model outperforms other state-
of-the-art BIQA models on six in-the-wild IQA databases,
and also achieves an excellent performance in the cross-
database evaluation, which demonstrate the effectiveness and
generalizability of the proposed model. What’s more, the
proposed model is very flexible and can be replaced with
popular CNN models to meet the various needs of practical
applications.
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