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Abstract. Social difficulties are hallmarks of individuals with autism
spectrum disorder (ASD), of which atypical visual attention is one of the
most important characteristics. Learning and modeling the atypical visual
attention of individuals with ASD have particularly important significance
to related research in the fields of medical science, psychology, education
etc., and many studies have been conducted in the literature. However,
previous studies have two weaknesses. First, all stimuli in the conducted
experiments are selected by the researchers, which are not only restricted
by the objective and intention of the researchers, but also limited by the
subjective cognition of the photographers. Secondly, most of these stimuli
are displayed on screens with restricted and relatively small field-of-view
(FOV) compared with the real world. Therefore, in this paper, we conduct
the first large-scale study towards better understanding and modeling the
atypical visual attention of individuals with ASD in real world. To over-
come the two weaknesses mentioned above, a large-scale dataset is estab-
lished which includes 300 omnidirectional images with the corresponding
eye tracking data collected under virtual reality (VR) environment among
15 children with ASD and 16 typically developing (TD) controls. More-
over, a vector quantized saliency prediction model (VQSAL) is applied
to better learn the visual attention patterns of both ASD and TD people
under the omnidirectional condition.

Keywords: Autism spectrum disorder (ASD) · Atypical visual
attention · Virtual reality (VR)

1 Introduction

Autism is a complex neurodevelopmental condition, and little is known about
its neurobiology [1]. Phenotype markers including social communication symp-
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toms, fixated or restricted behaviors or interests, hyper- or hypo- sensitivity to
sensory stimuli, and associated features have been widely used in characterizing
and diagnosing the Autism Spectrum Disorder (ASD) [2]. Among these, social
difficulties are known as the hallmark features of autism. As an important aspect
of social difficulties, atypical visual attention is frequently observed in individu-
als with autism [3] and reported in the literature [4,5]. Several possibly related
visual attention traits of autistic individuals have been reported in some early
studies, including reduced joint-attention behaviours [6], reduced attention to
social stimuli (i.e., faces, conversations, etc.) but increased attention to non-
social stimuli (i.e., vehicles, electronics, etc.) [7,8], reduced visual attention to
core facial features [9,10], etc. However, the vast majority of these prior studies
have used restricted or unnatural stimuli, which limited the exploration of the
common characteristics underlying the ASD.

Recently, some studies have conducted large-scale experiments for charac-
terizing the visual attention traits of ASD. Wang et al. [4] have quantified the
atypical visual attention in ASD across multi-level features using natural stimuli
and pointed out the preference of individuals with autism to low-level features
of the stimuli. Jiang et al. [11] have presented a method to model the visual
attention differences between individual with ASD and healthy people. Duan et
al. [12] have established a large-scale open eye movement dataset for children
with autism and fine-tuned four state-of-the-art (SOTA) visual attention models
for learning the gaze pattern of autistic children [13]. Duan et al. [14] have fur-
ther conducted a large-scale eye movement study for children with autism on face
stimuli and proposed a model to characterize gaze pattern under this specific con-
dition. Fang et al. [15] have studied the visual attention of children with autism
on gaze-following stimuli and proposed a LSTM-based saliency model for classi-
fying the gaze patterns between autistic children and typically developing (TD)
controls. However, though these studies have conducted large-scale experiments
on natural stimuli, all these stimuli were limited by the intended selections of
the researchers and the restricted fields-of-view (FOVs) from the photographers,
and neither of them has autism. The omnidirectional visual attention character-
istics of ASD are still unknown. Furthermore, all these stimuli were displayed
on the relatively small screens, while the differences between the semantic-level
perception of screen images and real world still exist.

These two weakness of previous studies motivate us to conduct this study,
i.e., understanding and modeling the gaze pattern of children with autism in
the real world. Instead of displaying image stimuli on screens, the eye tracking
experiments in this work are conducted in Virtual Reality (VR) environment. A
large-scale eye movement dataset is first established, which includes 300 omni-
directional images with the corresponding eye movement data collected from 15
children with autism and 16 TD controls. Based on the dataset, we further ana-
lyze the gaze pattern differences between autistic children and healthy children
under this nearly natural condition. Moreover, we also apply a saliency predic-
tion model based on the vector quantized neural network for better modeling the
visual attention of both ASD and TD people under omnidirectional condition.
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To the best of our knowledge, this is the first study that analyzes and models
the omnidirectional visual attention of children with autism in the literature
towards better understanding the gaze pattern of them. Eye movements encode
rich information about the attention, cognition and psychological factors of an
individual. Thus, understanding and modeling the gaze pattern of children with
autism in (virtual) reality can not only help to further understand autism, but
also may contribute to related application areas, such as diagnosis [11,15] and
rehabilitation [16].

2 Subjective Experiment and Analysis

2.1 Omnidirectional Image Stimuli and Displaying Apparatus

We collected 300 omnidirectional images with high-resolution from two large-
scale 360 image databases, including 85 images from Salient360 [17] and 215
images from SUN360 [18]. As shown in Fig. 1, the collected images contain vari-
ous scenes in indoor and outdoor scenarios. Moreover, considering the differences
between the visual attention of individuals with/without autism to social/non-
social stimuli, we also balanced the semantic information inside the omnidirec-
tional images. As shown in Fig. 1, our stimuli include rich visual features with
various pixel-level, object-level, and semantic-level information.

We used HTC VIVE Pro Eye1 as the hardware apparatus to display omni-
directional stimuli and collect eye movement data [19–23]. The software system
was designed using Unity3D2 to control the experimental procedure and record
all data. The resolution of the display inside HTC VIVE Pro Eye is 1440× 1600
pixels per eye which covers 110◦ FOV. The refresh rate 90 Hz. The eye-tracker
inside it is supported by Tobii, and the frequency to collect gaze data 120 Hz.

2.2 Subjects

We recruited 31 subjects in our experiments, including 15 children with autism
and 16 TD controls. All 15 autistic children were with medium-/high- function
and could cooperate with us for the experiment. The age of the participants with
ASD ranged from 7 years old to 13 years old with the average age of 10.4 years
old. Sixteen healthy children were recruited as controls, whose ages were ranged
from 7 years old to 9.6 years old with the average of 8 years old. Besides the age,
the gender, handedness, and performance IQ were also matched between two
groups. Before participating in the test, the parents of subjects read and signed
a consent form which explained the human study. All participants had normal
or correct-to-normal visual acuity during the experiment.

1 https://www.vive.com/us/product/vive-pro-eye/overview/.
2 https://unity.com/.

https://www.vive.com/us/product/vive-pro-eye/overview/
https://unity.com/
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Fig. 1. Sample stimuli in our database.

2.3 Experiments

Since our work is the first study that conducts eye tracking experiments under
VR environment to analyze the visual attention differences between individuals
with autism and TD controls. The experiments need to be carefully designed and
conducted. There were three methods in the literature to conduct eye tracking
experiments under VR environment. Rai et al. [17] conducted the eye tracking
study under seated condition with free viewing. Sitzmann et al. [24] studied
both the seated condition and standing condition with free viewing. Haskins et
al. [25] carried out the study under seated condition while the omnidirectional
image rotate at a constant speed. Considering the possible cognition and com-
munication problems for children with autism, in this paper we conducted the
experiments in two conditions.



592 X. Ren et al.

StandingCase.We conducted the first experiment with 200 images under stand-
ing condition with free viewing, since it is hard to teach the children with autism
to use swivel chairs to look through the whole image. Due to the lack of patience
of ASD participants, we split the experiment into 20 recording sessions with 10
images in each session. The initial viewing direction was initialized at the center of
the omnidirectional image. Each omnidirectional image was displayed in the VR
device for 20 s and followedbya1-secondgray screenmask.At thebeginning of each
session,we re-calibrate the eye-tracker to ensure the reliability of the acquired data.

SeatedCase. Since the method in [25] may cause strong motion sickness, here we
propose another way to conduct the second experiment, which includes the rest 100
images. The same as the standing case, we split the experiment into 10 recording
sessions with 10 images in each session. The children were seated on a fixed chair.
The initial viewing direction was similarly initialized at the center of the omnidi-
rectional image. Each omnidirectional images was similarly displayed in the VR
device for 20 s but rotated 90◦ every 5 s. Other procedures were the same with the
standing case.

2.4 Analysis

Based on the constructed database, in this section, we analyze the differences and
similarities between the visual attention of autistic children and healthy controls.

Global Comparison.We first analyze the global visual attention differences and
similarities over the omnidirectional space between two groups. Figure 2 demon-
strates several examples under the standing case. As shown in Fig. 2(a), children
with autism try to avoid the close people who are looking at them while concen-
trating more on other salient targets in the car. As shown in Fig. 2(b), children
with autism show reduced attention to the joint-attention of the main character
in the scene but spread more attention to meaningless areas. Figure 2(c), (d) and
(e) indicate the core characteristic of individuals with ASD, i.e., social deficits or
reduced social attention. It can be observed that children with ASD try to avoid the
social targets that TD groups mainly concern and tend to concentrate on marginal
directions and areas which are far way from them. It is interesting that in most of
the classroom conditions, as shown in Fig. 2(h), (i), (j), the global visual attentions
over thewhole space are similar between theASDgroup andTDgroup.We suppose
that the semantic distributions of the classroom scenes are relatively uniform over
the space, while in the scenes in Fig. 2(c), (d) and (e), the semantic distributions
are spatially non-uniform. This phenomenon may reveal that the atypical visual
attentions of children with autism are conditionally dependent on the scene. More-
over, autistic children and TD children show similar visual attention to non-social
scenes, as shown in Fig. 2(f) and (g).

We further analyze the glocal differences over the whole space under seated
condition, which are demonstrated in Fig. 3. As illustrated in Fig. 3(a) and (b),
children show increased visual attention to non-social objects or information,
while TD children tend to pay more attention on social information. As shown
in Fig. 3, similar to the standing case, children tend to look more at the directions
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Fig. 2. Global differences and similarities over the whole space between the visual
attention of autistic children and healthy controls (standing case).
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Fig. 3. Global differences over the whole space between the visual attention of autistic
children and healthy controls (seated case).

far away from the social information or just trying to avoid the social scenarios
near them. Moreover, children with autism seem to lack the ability of information
integration and prediction, thus show reduced attention to the normally main
focus in the scene as shown in Fig. 3(d) and (e).

Local Comparison. We have analyzed the global similarities and differences as
above. However, we should notice that an omnidirectional image contains huge
information, and even for a local FOV, the amount of information is similar
to that of a regular image used in previous studies [12,13,26]. Therefore, it is
also valuable to discuss the local differences between the omnidirectional visual
attentions of ASD group and TD group. We show two examples in Fig. 4 to
demonstrate this point. As can be observed in Fig. 4(a), in the local FOV of the
yellow rectangular, children with autism tend to look more at the steering wheel,
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Fig. 4. Examples of local differences between the visual attention of autistic children
and healthy controls for two images showed in Fig. 2 (standing case). (Color figure
online)
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Fig. 5. Overview of the VQSAL model. Our approach uses a convolutional VQGAN to
learn a context-rich codebook of the omnidirectional images, whose knowledge is then
transfer to the saliency prediction.

while TD children focus more on the driver. As illustrated in the local FOV (the
yellow rectangular) in Fig. 4(b), children with autism show close attention to the
head and feet of the people, while TD children pay more attention to the face.

3 Omnidirectional Saliency Prediction

Our goal is to understand the context information of an image and model the
visual saliency of different groups under the omnidirectional condition. In this
paper, we apply a two-stage method for visual saliency prediction, which is a
transfer learning framework based on a learned discrete representation model
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via VQGAN, as described in Sect. 3.1. We surprisingly find this approach, sum-
marized in Fig. 5, is harmoniously consistent with the human vision model and
may be useful and reasonable for modeling the visual attention of human groups
with different cognitive conditions, as discussed in Sect. 3.2.

3.1 Transfer Learning for the Saliency Prediction

We first follow the VQGAN [27] to learn a discrete representation model for
omnidirectional images. Through the discrete representation model learned, we
can represent any image x ∈ R

H×W×3 using a spatial collection of codebook
entries zq ∈ R

h×w×nz from the codebook Z, where nz is the dimensionality
of codes and Z = {zk}Kk=1 ⊂ R

n
z is the learned perceptually rich code book.

The representation zq includes the extremely compressed but perceptually rich
information of the image, which can be directly used to decode and predict
visual saliency information. Since visual saliency is not only related to local
information, but also related to global relationship, we use the non-local neural
network in VQGAN to appropriately learn the global relationship and the CNN
decoder to decode local information. Moreover, we use transfer learning to the
decoder of the VQGAN to decode and predict the saliency density map. The
overall process of this method can be represented as:

x̂sal = GS(zq) = GS (q(E(x))) , (1)
where GS is the decoder for saliency density prediction. The loss function of the
saliency prediction in our paper is defined as:

L = Lrec + λLsal, (2)
where Lsal = LCC +LKL, CC and KL are two widely used metrics for measuring
the accuracy of the predicted saliency maps. The weighting factor λ is empirically
set as 0.2 in this paper.

3.2 Discussion of VQSAL

We surprisingly find that this model is harmoniously consistent with the human
visual attention model and may be useful and reasonable for modeling the visual
attention of human groups with different cognitive conditions. The process of
neural discrete inference is similar to the process of human attention formation,
i.e., encoding a given image to information, then quantifying the information
with human knowledge base, and finally decoding to human visual attention
activities. However, most of previous learnable saliency prediction methods have
used only encoder [28] or autoencoder [29] to model the visual attention. More-
over, it seems unreasonable to finetune the whole model for human groups with
different cognitive conditions since their vision perception systems are similar
(i.e., encoder part) [13]. This is precisely the rationality of our method, since
the discrete representation encoder is pre-trained, and it is reasonable to simulate
the visual saliency of humans with different cognitive conditions using different
decoders.
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Table 1. Quantitative comparison results of different models for saliency prediction
on ASD group (Learnable models are fine-tuned on our dataset).

Metric\ModelItti GBVS [30]GBVS360 [31]BMS [32]BMS360 [31]Zhu et al. [33]Salicon [28]MLNet [34]SalGAN [29]Ours

CC ↑ 0.4140.398 0.427 0.444 0.465 0.499 0.647 0.453 0.629 0.679

NSS ↑ 0.9160.880 0.902 0.998 1.096 1.114 1.464 1.031 1.417 1.621

AUC ↑ 0.7430.734 0.743 0.760 0.759 0.768 0.830 0.764 0.817 0.833

SIM ↑ 0.4520.444 0.452 0.462 0.468 0.464 0.571 0.476 0.576 0.607

KLD ↓ 4.4284.620 4.575 4.288 4.040 4.406 2.303 3.490 2.277 1.907

Table 2. Quantitative comparison results of different models for saliency prediction
on TD group (Learnable models are fine-tuned on our dataset).

Metric\Model Itti GBVS [30] GBVS360 [31] BMS [32] BMS360 [31] Zhu et al. [33] Salicon [28] MLNet [34] SalGAN [29] Ours

CC ↑ 0.443 0.425 0.459 0.478 0.493 0.528 0.678 0.535 0.669 0.724

NSS ↑ 1.007 0.954 1.039 1.104 1.202 1.204 1.286 1.264 1.543 1.797

AUC ↑ 0.764 0.752 0.764 0.778 0.781 0.790 0.841 0.787 0.834 0.845

SIM ↑ 0.475 0.465 0.480 0.483 0.490 0.491 0.611 0.522 0.608 0.641

KLD ↓ 3.915 4.073 3.981 3.883 3.835 3.912 1.828 2.786 1.759 1.527

GT BMS MLNet SalGAN OursImage

AS
D

TD

Fig. 6. Qualitative comparisons between different methods.

4 Experimental Results

4.1 Performance Evaluation on Our Dataset

We evaluate the performance of VQSAL on modeling the visual attention of
different groups on our dataset. Table 1 shows the quantitative comparisons of
different models for modeling the visual attention of children with ASD. It can
be observed that our method acquires the best performance compared to other 9
SOTA models. As demonstrated in Table 2, towards modeling the visual atten-
tion of TD children, VQSAL also achieves the SOTA results compared with other
models.



Where are the Children with Autism Looking in Reality? 597

Table 3. Quantitative comparison results of different models for saliency prediction
on other datasets.

Categories Metric\Model GBVS360 [31] BMS [32] BMS360 [31] Zhu et al. [33] Salicon [28] MLNet [34] SalGAIL [35] Ours

Overall CC ↑ 0.590 0.557 0.714 0.727 0.511 0.589 0.742 0.816

NSS ↑ 0.995 0.975 1.378 1.295 0.856 1.064 1.556 1.591

AUC ↑ 0.766 0.758 0.841 0.821 0.757 0.784 0.853 0.870

KLD ↓ 0.566 0.584 0.584 0.420 0.637 0.844 0.345 0.251

Moreover, we further compare the qualitative results between different mod-
els for modeling the visual attention of ASD children and TD children, respec-
tively, as shown in Fig. 6. We can observe that the predicted saliency results of
our method are more consistent with the ground-truth (GT). More importantly,
compared with other SOTA methods, our method can better describe the local
visual attention in detail while other models can only generate a rough visual
attention map over the space.

4.2 Generalization Ability on Other Datasets

VQSAL can not only be used to model the visual attention of human groups
with different cognitive conditions, but also be extended to the general omni-
directional saliency prediction task. Here we demonstrate the superiority of
VQSAL on another omnidirectional saliency prediction database [35]. As shown
in Table 3, the overall performances of VQSAL across different metrics are better
than other 7 SOTA models.

5 Discussion and Conclusion

In this paper, we present an important problem i.e., where are the children with
autism looking in reality? Although there were many previous studies discussing
the visual attention of individuals with autism, the vast majority of prior studies
not only used stimuli with restricted FOV, but also conducted experiments with
relatively small and fixed FOV. To the best of our knowledge, there is no pre-
vious study conducting large-scale controllable experiments towards modeling
the visual attention of children with autism in reality. Considering two factors,
i.e., omnidirectional free viewing and controllable experimental condition, are
required to be balanced, we conduct the first large-scale visual attention study
under VR environment, towards better understanding and modeling of the gaze
pattern of children with autism in reality/VR.

Besides the contribution of the large-scale eye-tracking study and the
database, we also apply a saliency prediction method for better modeling the
human visual attention. We surprisingly find the consistence between the model
and various human groups with different cognitive conditions. Quantitative and
qualitative comparisons with SOTA models demonstrate the superiority of this
method. Moreover, this method can also be generalized to other omnidirectional
saliency prediction datasets and tasks and achieve SOTA performances.
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There are many interesting phenomena can be observed from the constructed
database. In this paper, though we have analyzed some omnidirectional differ-
ences between the visual attention of children with autism and healthy con-
trols, more explorations are needed to further study the common characteristics
underlying this complex neurodevelopmental condition in the future. First of all,
more statistical analysis are needed to compare the differences between the gaze
patterns of two groups, including the quantitative analysis of the fixations and
various visual features (e.g., from pixel level features to semantic level features),
the relationship between head movement and eye movement, the characteristics
of saccades and scanpaths etc. Moreover, this study can be seen as a large-scale
preliminary research for future works to design specific stimuli towards diagnosis
or rehabilitation application development.
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