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Abstract. This paper presents a new vision Transformer, named Iwin
Transformer, which is specifically designed for human-object interaction
(HOI) detection, a detailed scene understanding task involving a sequen-
tial process of human/object detection and interaction recognition. Iwin
Transformer is a hierarchical Transformer which progressively performs
token representation learning and token agglomeration within irregular
windows. The irregular windows, achieved by augmenting regular grid
locations with learned offsets, 1) eliminate redundancy in token repre-
sentation learning, which leads to efficient human/object detection, and
2) enable the agglomerated tokens to align with humans/objects with
different shapes, which facilitates the acquisition of highly-abstracted
visual semantics for interaction recognition. The effectiveness and effi-
ciency of Iwin Transformer are verified on the two standard HOI detec-
tion benchmark datasets, HICO-DET and V-COCO. Results show our
method outperforms existing Transformers-based methods by large mar-
gins (3.7 mAP gain on HICO-DET and 2.0 mAP gain on V-COCO) with
fewer training epochs (0.5×).

Keywords: Human-object interaction detection · Transformers ·
Irregular windows

1 Introduction

Given an image containing several humans and objects, the goal of human-
object interaction (HOI) detection is to localize each pair of human and object
as well as to recognize their interaction. It has attracted considerable research
interests recently for its great potential in the high-level human-centric scene
understanding tasks.

Recently, vision Transformers [37] have started to revolutionize the HOI
detection task, which enable end-to-end HOI detection and achieve leading
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Fig. 1. An illustration of regular windows and irregular windows. For regular win-
dow, the window can be a global rectangle containing the entire image (a) or a local one
(b) that might divide an object into parts. In contrast, irregular windows can align with
the arbitrary shapes of objects or semantic regions. We can rearrange the tokens within
an irregular window to form a rectangular window for self-attention computation
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Fig. 2. Model size and training epochs vs. performance analysis for HOI detection
on HICO-DET. Specifically, Swin-based refers to perform a Swin-T model on the output
of a FPN as the encoder of a Transformer. For fair comparison, all the models in the
right sub-figure are trained from scratch

performance [3,15,35,44,51]. However, they mainly adopt DETR-like [1] Trans-
formers, which learn visual semantics by self-attention between patch tokens
within rectangular windows (Fig. 1), either local or global, resulting in mixed
and redundant visual semantics. Such visual semantics fail to capture object-
level abstractions, which are crucial for interaction recognition.

To address the aforementioned limitation, we propose Iwin Transformer,
short for Transformer with irregular windows, which is a new hierarchical vision
Transformer specifically designed for HOI detection. The irregular windows, as
illustrated in Fig. 1, are obtained by augmenting regular grid locations with
learned offsets, which are expected to be aligned with humans/objects with arbi-
trary shapes. Iwin Transformer performs both token representation learning and
token agglomeration within irregular windows. The former eliminates redun-
dancy in self-attention computation between patch-level tokens, leading to effi-
cient human/object detection; The latter progressively structurizes an image as
a few agglomerated tokens with highly-abstracted visual semantics, the contex-
tual relations between which can be easily captured for interaction recognition.
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Iwin Transformer takes the characteristic of HOI detection into account, i.e., a
sequential process of human/object detection and interaction recognition, enjoy-
ing both higher efficiency and better effectiveness, as shown in Fig. 2.

It is worth emphasizing that our method is different from regular window-
based Transformers as well as deformable DETR [50]. In addition to the different
objectives, the former,e.g., Swin Transformer [26], partitions an image into sev-
eral regular windows that are not aligned with humans/objects with different
shapes, leading to redundancy in self-attention computation; The latter, i.e.,
deformable DETR, deals with a fixed number of tokens without token grouping,
being weak in extracting highly-abstracted visual semantics.

Experimental results show that Iwin Transformer outperforms existing SOTA
methods by large margins and is much easier to train. Specifically, Iwin achieves
a 3.7 mAP gain on HICO-DET [2] and a 2.0 mAP gain on V-COCO [8] with
fewer training epochs (0.5×).

2 Related Work

CNN-Based HOI Detection. CNN-based methods can be divided into two
different types:1) Two-stage. Most two-stage methods [2,5–7,9,12,14,16,18,20,
24,25,31,36,38–40,42,43,46,48,49] obtain the human and object proposals by
using a pre-trained object detector firstly, and then predict interaction labels by
combining features from localized regions. More specifically, they first use Faster
R-CNN [33] or Mask R-CNN [10] to localize targets, including humans and
objects. Then, the cropped features are fed into a multi-stream network, which
normally contains a human stream, an object stream and a pairwise stream. The
first two process features of target humans and objects, respectively, and the last
one normally processes some auxiliary features, such as spatial configurations of
the targets, human poses, or the combination of them. In addition, some other
methods utilize graph neural networks to refine the features [31,36,39,43,45,48].
Such methods have made impressive progress in HOI detection, but they still suf-
fer from low efficiency and effectiveness. 2) Single-stage. Different from two-stage
methods, single-stage methods detect the targets and their interactions simulta-
neously. In detail, UnionDet [14] predicts the interactions for each human-object
union box by an anchor-based method. PPDM [21] and IPNet [41] represent the
interactions as the midpoints of human-object pairs and detect them based on
point detection networks. GGNet [47] further improves the performance of the
point-based method by introducing a novel glance and gaze manner. These meth-
ods are simpler, but are weak in modeling long range contextual information,
resulting in poor performance when human and object are far apart.
Transformers-Based HOI Detection. Recently, Transformers-based meth-
ods have been proposed to handle HOI detection as a set prediction problem.
More specifically, [35,51] design the HOI instances as some learnable queries, and
use a typical Transformer with encoder-decoder architectures to directly predict
HOI instances in an end-to-end manner. In addition, [3,15] detect human-object
instances and interaction labels with parallel decoders. In [44], human/object
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Fig. 3. An overview of Iwin Transformer. For simplicity of presentation, the
decoder and matching component are omitted. The detailed illustrations about “Iwin
Attention Block” and “Agglomeration” can be seen in Fig. 4

detection and interaction classification are disentangled in a cascade manner.
However, these methods adopt the simple tokenization strategy to structurize
an image into a sequence of local patches, which is insufficient for detailed image
understanding tasks like HOI detection.

3 Method

An overview of the proposed Iwin Transformer is presented in Fig. 3. In this
section, we start with a general description of the entire model, followed by a
detailed technical description of each key component.

3.1 Architecture Overview

Backbone. Taking as input an image x ∈ R
3×H×W , the feature maps with dif-

ferent spatial resolutions are firstly computed by using a ResNet [11] backbone to
model local structures. Then, a feature pyramid network (FPN) is performed to
get a high resolution feature map zb ∈ R

Cb×H
4 ×W

4 by weighted merging the fea-
ture maps with different resolutions, to ensure reliable performance in detecting
small objects.Here, Cb is the number of channels.
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Fig. 4. Iwin attention block (a) and Irregular window-based token agglomeration (b).
“LN” refers to layer normalization

Encoder. The encoder consists of two main parts: 1) agglomerative tokeniza-
tion that progressively structurizes an image as a few agglomerated tokens by
recursively performing irregular window-based token representation learning and
agglomeration. 2) global contextual modeling for long-range context modeling.
Agglomerative Tokenization. It consists of three “Stage”s in a cascaded manner.
Each stage is composed of token representation learning and token agglomeration
within irregular windows. Specifically, token representation learning is performed
by stacking several attention blocks based on multi-scale irregular window par-
tition (MS-IWP), i.e., “Iwin Attention Block” in Fig. 3. We describe it in detail
in the next Sect. 3.3. After token representation learning, tokens in an irregu-
lar window are agglomerated into new tokens as the inputs for the next stage,
which is described in detailed in Sect. 3.4. By recursively performing irregular
window-based token representation learning and agglomeration, an image can
be structurized as a few agglomerated tokens with highly-abstracted semantics.
Global Contextual Modeling. After agglomerative tokenization, we then apply two
cascaded global self-attention blocks to modeling the global contextual informa-
tion. Unlike Iwin attention block, the attention weights are computed among
all tokens in a global self-attention block. There are two main reasons: 1) inter-
action recognition demands a larger and more flexible receptive field, since the
human and the object he/she interacts with may be far away or very close. 2)
one interaction instance can provide some clues for the recognition of another
interaction category, e.g., a man holding a fork is likely to be eating something.
Although attention is computed in a global manner, global self-attention block
does not introduce too much computation since the number of tokens has been
greatly reduced after agglomerative tokenization.
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Decoder. The decoder consists of 6 typical Transformer decoder layers, where
each layer contains a self-attention module for correlations modeling between
HOI instances, and a cross-attention module for HOI instances decoding. It
takes as inputs both the outputs of encoder and N learnable HOI queries with
256 dimensions. We also conduct several different decoders, including multi-layer
perceptron and local-to-global decoder which has a symmetrical structure of the
proposed encoder. Their results are shown in Sect. 4.4.

Matching Cost Function. We use the same matching cost function proposed
in [35]. It is defined as:

Lcost =
N∑

i

Lmatch(gi,pσ(i)), (1)

where Lmatch(gi,pσ(i)) is a matching cost between ground truth gi and predic-
tion pσ(i). Specifically, the matching cost is designed as:

Lmatch(gi,pσ(i)) = β1

∑

j∈h,o,r

αjLj
cls + β2

∑

k∈h,o

Lk
box, (2)

where Lj
cls = Lcls(gi

j , p
θ(i)
j ) is cross-entropy loss function, j ∈ {h, o, r} denotes

human, object or interaction, and gi
j represents the class label of j on ground-

truth gi. Lk
box is box regression loss for human box and object box, which is a

weighted sum of GIoU [34] loss and L1 loss. β and α are both hyper-parameters.
Finally, the Hungarian algorithm [17] is used to solve the following problem to
find a bipartite matching:

σ̂ = arg min
σ∈SN

Lcost, (3)

where SN denotes the one-to-one matching solution space.

3.2 Irregular Window Partition

Window partition is firstly proposed in [26], which splits an image into several
regular windows, as illustrated in Fig. 1. Considering a feature map with reso-
lution of H × W and dimension of C, the computational complexity of a global
multi head self-attention (G-MSA) module and a window-based one (W-MSA)
with window size of Sw × Sw are:

Ω(G-MSA) = 4HWC2 + 2(HW )2C, (4)

Ω(W-MSA) = 4HWC2 + 2S2
wHWC, (5)

where the former is of quadratic computation w.r.t pixel numbers while the lat-
ter is of linear computation. In regular window partition scheme, the tokens
are sampled by using a regular rectangle R over the input feature map z,
where the rectangle R defines the receptive field size. For example, R =
{(0, 0), (0, 1), ..., (3, 4), (4, 4)} defines a window with size of 5 × 5. However, as
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shown in Fig. 1, regular windows may divide an object into parts and the tokens
in a window are most likely unrelated, leading to redundancy in self-attention
computing. Inspired by [4], we propose irregular window partition by augment-
ing the regular windows with learned offsets fo ∈ R

2×H×W . Specifically, the fo
is learned by performing a convolutional layer with a kernel size of 3 × 3 over
the entire feature map. With the learned offsets fo, we can rearrange the tokens
that are sampled from the irregular and offset locations z(pn + Δpn

) to form a
rectangular window, where pn ∈ R are the sampling locations for regular win-
dows while Δpn

∈ fo are the learned offsets, n = 1, 2, ..., |R|. Since the learned
offset Δpn

is usually fractional, z(p) is defined via bilinear interpolation as

z(p) =
∑

q

K(q,p) · z(q), (6)

where p denotes an arbitrary location pn + Δpn
, q enumerates all integral spa-

tial locations, and K(·, ·) is the bilinear interpolation kernel. Since K is two
dimensional, it can be separated into two one dimensional kernels as

K(p,q) = k(qx, px) · k(qy, py), (7)

where k(a, b) = max(0, 1 − |a − b|).
For convenience, we simply use the term “an irregular window with size of

Sw × Sw” to denote an irregular window that is generated by augmenting a
regular rectangle with size of Sw × Sw in the following.

3.3 Irregular-Window-Based Token Representation Learning

Irregular-window-based token representation learning is performed by stacked
several Iwin attention blocks, where self-attention is computed within irregular
windows. As illustrated in Fig. 4 (a), all Iwin attention blocks have an identical
structure, which contains a multi-scale irregular window partition (MS-IWP)
module, several window-based multi-head self-attention (W-MSA) modules as
well as a feed-forward network (FFN). Specifically, in MS-IWP, a input feature
map is dynamically splitted into several irregular windows by performing irregu-
lar window partitioning. Then, we rearrange the tokens within an irregular win-
dow to form a rectangular window for self-attention computition. Moreover, the
window size Sw is designed to be various since the scales of the humans/objects
in an image can be different, as illustrated in Fig. 3. Specifically, Sw ∈ {5, 7}
for “Stage-1” and “Stage-2” and Sw ∈ {3, 5} for “Stage-3”. Then, we apply
multi-head self-attention within each window. As shown in Fig. 4, window-based
multi-head self-attention (W-MSA) is applied for N times as there are windows
of N different sizes. After that, the output feature maps of different W-MSA
modules are weighted summed via a convolutional layer with kernel size of 1×1.
Finally, the FFN is applied to the sum of different W-MSA modules and input
features, and each FFN is formed by two dense linear layers with ReLU [29]
activations in between.
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3.4 Irregular-window-based Token Agglomeration

As illustrated in Fig. 4 (b), we first perform irregular window partitioning with
a size of 2 × 2, i.e., every 4 related tokens are grouped into one window. Then,
these 4 tokens are concatenated to generate a 4C-dimensional feature, where C
is the number of channels of one token. After that, we apply a linear layer on
the 4C-dimensional feature as

tnew = w · concat [z(pn + Δpn
)|n ∈ 1, 2, 3, 4] , (8)

where w denotes the learned weights of linear layer. pn and Δpn
are regular grid

locations and learned offsets, respectively. The output dimension of the linear
layer is set as 2C.

After each stage in tokenization, the number of tokens is reduced by a factor
of 2 × 2 = 4 , and the dimension of feature map are doubled (from C to 2C).
Specifically, The number of tokens before and after “Stage-i” are H

21+i × W
21+i

and H
22+i × W

22+i respectively, and the output dimensions are 64 × 2i−1. It not
only further reduces the redundancy of tokens, but also enables the newly gen-
erated tokens to be aligned with humans/objects with different shapes and to
characterize higher-abstracted visual semantics.

4 Experiments

4.1 Datasets and Evaluation Metric

Datasets. We conducted experiments on HICO-DET [2] and V-COCO [8]
benchmarks to evaluate the proposed method by following the standard scheme.
Specifically, HICO-DET contains 38,118 and 9,658 images for training and test-
ing, and includes 600 HOI categories (full) over 117 interactions and 80 objects.
It has been further split into 138 Rare (rare) and 462 Non-Rare (non-rare) HOI
categories based on the number of training instances. V-COCO is a relatively
smaller dataset that originates from the COCO [23]. It consists of 2,533 and 2,867
images for training, validation, as well as 4,946 ones for testing. The images are
annotated with 80 object and 29 action classes.
Evaluation Metric. We use the commonly used mean average precision (mAP)
to evaluate model performance on both datasets. A predicted HOI instance is
considered as true positive if and only if the predicted human and object bound-
ing boxes both have IoUs larger than 0.5 with the corresponding ground-truth
bounding boxes, and the predicted action label is correct.

Moreover, for HICO-DET, we evaluate model performance in two different
settings following [2]: (1) Known-object setting. For each HOI category, we eval-
uate the detection only on the images containing the target object category. (2)
Default setting. For each HOI category, we evalute the detection on the full test
set, including images that may not contain the target object.
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Table 1. Performance comparison on the HICO-Det test set. ‘P’ refers to
human pose and ‘L’ denotes language. The Best performance are represented in red
and the second best ones are shown in blue.

Method Backbone Detector P L Default Known object

Full↑ Rare↑ NonRare↑ Full↑ Rare↑ NonRare↑
CNN-based two-stage methods

InteractNet [7] ResNet-50-FPN COCO 9.94 7.16 10.77 - - -

GPNN [31] ResNet-101 COCO 13.11 9.34 14.23 - - -

iCAN [6] ResNet-50 COCO 14.84 10.45 16.15 16.26 11.33 17.73

No-Frills [9] ResNet-152 COCO � 17.18 12.17 18.68 - - -

TIN [20] ResNet-50 COCO � 17.22 13.51 18.32 19.38 15.38 20.57

PMFNet [38] ResNet-50-FPN COCO � 17.46 15.65 18.00 20.34 17.47 21.20

CHG [39] ResNet-50 COCO 17.57 16.85 17.78 21.00 20.74 21.08

Peyre et al. [30] ResNet-50-FPN COCO � 19.40 14.63 20.87 - - -

VSGNet [36] ResNet152 COCO 19.80 16.05 20.91 - - -

FCMNet [25] ResNet-50 COCO � � 20.41 17.34 21.56 22.04 18.97 23.12

ACP [16] ResNet-152 COCO � � 20.59 15.92 21.98 - - -

PD-Net [46] ResNet-152 COCO � 20.81 15.90 22.28 24.78 18.88 26.54

PastaNet [19] ResNet-50 COCO � � 22.65 21.17 23.09 24.53 23.00 24.99

VCL [12] ResNet101 COCO 19.43 16.55 20.29 22.00 19.09 22.87

DRG [5] ResNet-50-FPN COCO � 19.26 17.74 19.71 23.40 21.75 23.89

Zhang et al. [45] ResNet-50-FPN COCO 21.85 18.11 22.97 - - -

CNN-based single-stage methods

UnionDet [14] ResNet-50-FPN HICO-DET 17.58 11.52 19.33 19.76 14.68 21.27

IPNet [41] Hourglass COCO 19.56 12.79 21.58 22.05 15.77 23.92

PPDM [21] Hourglass HICO-DET 21.73 13.78 24.10 24.58 16.65 26.84

GGNet [47] Hourglass HICO-DET 23.47 16.48 25.60 27.36 20.23 29.48

ATL [13] ResNet-50 HICO-DET 23.81 17.43 25.72 27.38 22.09 28.96

Transformer-based methods

HOI-Trans [51] ResNet-50 HICO-DET 23.46 16.91 25.41 26.15 19.24 28.22

HOTR [15] ResNet-50 HICO-DET 25.10 17.34 27.42 - - -

AS-Net [3] ResNet-50 HICO-DET 28.87 24.25 30.25 31.74 27.07 33.14

QPIC [35] ResNet-50 HICO-DET 29.07 21.85 31.23 31.68 24.14 33.93

Iwin-S (Ours) ResNet-50-FPN HICO-DET 24.33 18.50 26.04 28.41 20.67 30.17

Iwin-B (Ours) ResNet-50-FPN HICO-DET 32.03 27.62 34.14 35.17 28.79 35.91

Iwin-L (Ours) ResNet-101-FPN HICO-DET 32.79 27.84 35.40 35.84 28.74 36.09

4.2 Implementation Details

We implemented three variant architectures of Iwin: Iwin-S, Iwin-B, and Iwin-L,
where “S”, “B” and “L” refer to small, base and large, respectively. The number
of blocks in these model variants are:

– Iwin-S: Dc = 32, block numbers = {1, 1, 1, 1},
– Iwin-B: Dc = 64, block numbers = {1, 1, 3, 2},
– Iwin-L: Dc = 64, block numbers = {1, 1, 3, 2},

where we applied ResNet-50 as a backbone feature extractor for both Iwin-
S and Iwin-B, and ResNet-101 was utilized for Iwin-L. Besides, the decoder
contains 6 Transformers decoder layers and the hyper-parameters β1, α and
β2 in the loss function are set as 1, 1, 2.5 for all experiments. The number of
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Table 2. Performance comparison on
the V-COCO test set

Method Backbone P L AProle

CNN-based two-stage methods

InteractNet [7] ResNet-50-FPN 40.00

GPNN [31] ResNet-101 44.00

iCAN [6] ResNet-50 45.30

TIN [20] ResNet-50 47.80

VSGNet [36] ResNet152 51.80

PMFNet [38] ResNet-50-FPN � 52.00

CHG [39] ResNet-50 52.70

FCMNet [25] ResNet-50 � � 53.10

ACP [16] ResNet-152 � 53.23

CNN-based single-stage methods

UnionDet [14] ResNet-50-FPN 47.50

IPNet [41] Hourglass 51.00

GGNet [47] Hourglass 54.70

Transformer-based methods

HOI-Trans [51] ResNet-50 52.90

HOTR [15] ResNet-50 55.20

AS-Net [3] ResNet-50 53.90

QPIC [35] ResNet-50 58.80

Iwin-S (Ours) ResNet-50-FPN 51.81

Iwin-B (Ours) ResNet-50-FPN 60.47

Iwin-L (Ours) ResNet-101-FPN 60.85

Table 3. The effects of different mod-
ules. “IWP”: irregular window partition,
“MS”: multi-scale windows, “TA”: token
agglomeration and “GC”: global contex-
tual modeling

FPN IWP MS TA GC Full↑ Rare↑ NoneRare↑
� � � � 31.24 26.01 32.95

� � � � 29.12 24.74 31.08

� � � � 31.42 26.97 33.15

� � � 26.33 24.05 28.21

� � � � 30.16 25.68 32.49

� � � � 23.05 16.50 24.62

� � � � � 32.03 27.62 34.14

Table 4. Comparison between different
types of token agglomeration strategy

Strategy Full↑ Rare↑ NoneRare↑
Norm-window 27.50 24.27 29.84

K-means 28.19 24.72 30.12

Irregular-window 32.03 27.62 34.14

queries N was set to 50 for HICO-DET and 100 for V-COCO. Unlike existing
methods that initialized the network by the parameters of DETR trained with
the COCO dataset, which contains prior-information about objects, we train
Iwin Transformer from scratch. We employed an AdamW [27] optimizer for 150
epochs as well as a multi-step decay learning rate scheduler. A batch size of 16,
an initial learning rate of 2.5e-4 for Transformers and 1e-5 for backbone are used.
The learning rate decayed by half at 50, 90, and 120 steps respectively.

4.3 Comparisons with State-of-the-Art

We first summarize the main quantitative results in terms of mAP on HICO-
DET in Table 1 and AProle on V-COCO in Table 2. As shown by the results,
Transformers-based methods show great potential compared to the CNN-based
methods. This can mainly attribute to the ability of self-attention to selectively
capture long range dependence, which is essential for HOI detection. On the basis
of that, our method outperforms SOTA approaches. Specifically, Iwin achieves
3.7 mAP gain compared with QPIC [35] on Full setting of HICO-DET dataset
as well as 2.0 AProle gain on V-COCO. The main reason for such results is that
we conduct token representation learning and agglomeration in a more effective
manner. Firstly, instead of utilizing global attention, we novelly perform self-
attention in irregular windows for token representation learning. It allows Iwin
effectively eliminates redundancy in self-attention while achieves a linear com-
putational complexity. Secondly, Iwin introduces a new irregular window-based
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Table 5. The effects of different position
encoding strategies

Position Encoding Full↑ Rare↑ NoneRare↑
None 20.80 17.54 22.30

Sin at input 28.74 25.83 31.07

Sin for all 28.59 25.74 30.86

Learned at attn. 31.64 27.03 32.79

Sine at attn. 32.03 27.62 34.14

Table 6. The effects of different
types of decoder

Decoder Full↑ Rare↑ NoneRare↑
MLP 19.39 16.41 21.85

Symmetry 26.03 24.11 29.02

Trans×2 27.31 25.07 30.28

Trans×4 29.40 26.16 31.46

Trans×6 32.03 27.62 34.14

token agglomeration strategy, which progressively structurizes an image as a few
agglomerated tokens with highly-abstracted visual semantic, which enables the
contextual relations to be more easily captured for interaction recognition. More-
over, Iwin can leverage high-resolution feature maps due to its computational
efficiency, which also boosts the performance in detecting small objects.

4.4 Ablation Study

4.4.1 Model Components
In this subsection, we analyze the effectiveness of the proposed strategies and
components in detail. All experiments are performed on the HICO-DET dataset
and the results are reported under the Default setting. Due to space limitations,
some other important experiments can be seen in the supplementary material.

FPN. Feature pyramid network [22] was first proposed to solve the problem
of detecting small objects. It is also crucial for HOI detection since the objects
with which a human interacts may be small, such as a cup, a spoon and a mobile
phone. It has been applied in lots of CNN-based HOI detection methods [5,7,38].
However, limited by the high computational complexity, existing Transformers-
based HOI detection methods can not process such high resolution feature maps,
resulting in poor performance in detecting small objects. In contrast, Iwin is
friendly to high resolution feature maps thanks to the strategies of irregular
window-based attention and token agglomeration. As shown in Table 3, with
FPN, the model obtains 0.79 mAP gain.

Multi-scale Irregular Window Partition. There are two main strategies
in a MS-IWP module, including irregular window partition (IWP) and multi-
scale windows (MS). Augmented by learned offsets, IWP enables the irregular
windows to align with human/object with different shapes and to eliminate
redundancy in token representation learning. Moreover, it allows the irregular
windows to own a dynamic receptive field compared to the regular ones, leading
to efficient human/object detection. As shown in Table 3, it plays an essential
role in IWP and achieves 3.1 mAP gain. Besides, we encourage the window size to
be diverse so that they can handle different sizes of objects. When we use neither
of the two strategies, the performance of the model is severely degraded, from
32.03 to 26.33 mAP, which indicates that learning strong token representation
is important for HOI detection.
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Fig. 5. Visualization of irregular windows. Each blue point is the location of an
agglomerated token obtained by agglomerative tokenization, and the red points are
the locations of the tokens involved in agglomeration. The envelope line of the red
points shows the shape of the irregular window for the agglomerated token. As the
input of Iwin Transformer are feature maps outputted by the backbone, the locations
in the original image are calculated via bilinear interpolation. Best view in color

Token Agglomeration. Irregular window-based token agglomeration progres-
sively structurizes an image as few agglomerated tokens with highly-abstracted
visual semantics. It gradually reduce the number of tokens, ensures the self-
attention to be performed in a global manner. Specifically, we illustrate the
learned sampling locations in Fig. 5. There are totally 43 = 64 sampling points
for each of the agglomerated token obtained by agglomerative tokenization, since
every 4 tokens are fused in a merging layer and 3 layers are employed. It can
be seen from the figure that the envelope line of the sampling locations shows
the shape of the irregular window, which is aligned with a semantic region with
different shapes. In addition, we have performed several other merging strategies
and list the quantitative results in Table 4. The “Norm-Window” refers to fusing
4 neighbouring tokens in a regular window, i.e., a rectangle with size of 2 × 2.
“K-means” denotes using an additional k-means algorithm [28] to cluster the
similar tokens. For the former, it is more of a regular downsampling operation
rather than generating high-level object-level semantic information, where the
performance of model is reduced to 27.5. Meanwhile, when applying k-means
algorithm, it is hard to determine the value of K, and as an individual module,
it has to be trained separately.

Global Contextual Modeling. Global contextual modeling consists of two
global self-attention mechanisms. As an essential component, it achieves a gain
of 9+ mAP. To further validate the importance of global self-attention for inter-
action recognition, we perform the global contextual modeling in two extra dif-
ferent manners: remove this module directly and replace the global attention
with window-based attention. Their results are shown in Fig. 6. Specifically, on
the basis of normalizing both the height and width of image, we divide the L1

distance between a human center and an object center into three uniform parts
and denote them as “close”, “moderate dist.” and “far”, respectively. With-
out global contextual modeling, the model has unsatisfactory performance in all
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          Close Far
D the  he/she interacts with

Fig. 6. Performance of different types
global contextual modeling on dif-
ferent spatial distributions. The mAP is
reported under the Full setting (Color
figure online)

Fig. 7. Performance of different types of
decoder. “DN ×M” refers to stacking M
typical Transformer decoder layers. The
mAP is reported under the Full setting

cases. When human and object are close, window-based attention achieves sim-
ilar performance with global attention. However, as the distance increases, the
performance of window-based attention is degraded seriously while the global
attention can still work well. The main reason is that the ROI of interaction
recognition can be diversely distributed image-wide.

Position Encoding. Position encoding is essential for Transformer architecture
since it is permutation invariant. However, in Iwin, convolutional operation is
also employed to learn the offsets in irregular windowing, in which position
encoding is not a necessity. Therefore, we conduct more experiments to explore
the effect of position encoding on convolution operation and the results are
shown in Table 5. Specifically, “Sin” refers to using fixed sinusoidal functions and
“Learned” denotes using learning embeddings. “At input” refers the position
encoding is utilized for only one time that directly be added to the output
features of backbone. “At attention” implies the position encoding is used only
when computing attention weights and “For all” indicts the position encodings
are employed in both attention modules and convolution operations. As the
result shown, position encoding is important for attention computing but of
little significant for convolution ones.

Decoder. We simply use the typical Transformers decoder for our approach.
As shown in Table 6, when we replace the Transformers decoder with a simple
multi-layer perceptron (MLP), the model still has a competitive performance to
some recent CNN-based methods. It suggests that our encoder has the ability
to effectively transform the visual information into high-level semantic space of
HOI. Besides, we also design a decoder that has a symmetry structure with the
encoder, where attention is conducted in both local and global manners. How-
ever, it does not achieve the desired effect. There are two different types of atten-
tion in decoder: self-attention and cross-attention. Specifically, self-attention is
responsible for learning the correlation among the HOI queries. For example, a
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man holding a fork is more likely to be eating. Meanwhile, with self-attention,
the HOI instances are decoded from the high-level semantic space generated by
the encoder. As these two both require a large receptive field, it is more effective
to perform the attention in a global manner. Besides, the model performs better
with more decoder layers.

4.4.2 Importance of Irregular Windowing
As mentioned above, HOI detection is a sequential process of human/object
detection and interaction recognition. Unlike object detection that can be per-
formed by modeling local structures, interaction recognition demands a larger
receptive field and higher-level semantic understanding. To verify the capacity
of different models to extract highly-abstracted features, we employ several dif-
ferent types of decoder, from simple to cpmplex, the results are illustrated in
Fig. 7. The relative gaps of performance between Iwin and the other methods
become more evident as the decoder gets simper. There are two main reasons:
1) computing attention weights among all tokens introduces severe redundancy
in self-attention for QPIC [35]. Regular window-based Transformer has the same
weakness since the tokens in a regular window are most likely to be irrelevant. 2)
without token agglomeration, QPIC-liked methods deal with local patch-based
tokens, which can only model the local structures needed for object detection.
With irregular window-based token representation learning and agglomeration,
Iwin’s robust highly-abstracted visual semantic extraction capability are shown
in two aspects. Firstly, even using a quite simple decoder, e.g., a MLP consists of
two dense-connected layers, Iwins achieves competitive performance compared
to some recent CNN-based methods. Secondly, Iwin is trained from scratch to
get the SOTA results while most existing methods utilize pre-trained models,
such as DETR [1] and CLIP [32]. Besides, unlike existing methods, Iwin is easy
to train by performing irregular window partition. As shown in Fig. 2, when
training from scratch, Iwin only needs half of the training epoches compared to
other methods.

5 Conclusion

In this paper, we propose Iwin transformer, a novel vision Transformer for HOI
detection, which progressively performs token representation learning and token
agglomeration within irregular windows. By employing irregular window par-
tition, Iwin Transformer can eliminate redundancy in token representation and
generate new tokens to align with humans/objects with different shapes, enables
the extraction of highly-abstracted visual semantics for HOI detection. We vali-
date Iwin transformer on two challenging HOI benchmarks and achieve consid-
erable performance boost over SOTA results.
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