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ABSTRACT
A single superimposed image containing two image views causes
visual confusion for both human vision and computer vision. Hu-
man vision needs a “develop-then-rival” process to decompose the
superimposed image into two individual images, which effectively
suppresses visual confusion. In this paper, we propose a human
vision-inspired framework for separating superimposed images. We
first propose a network to simulate the development stage, which
tries to understand and distinguish the semantic information of the
two layers of a single superimposed image. To further simulate the
rivalry activation/suppression process in human brains, we carefully
design a rivalry stage, which incorporates the original mixed input
(superimposed image), the activated visual information (outputs of
the development stage) together, and then rivals to get images with-
out ambiguity. Experimental results show that our novel framework
effectively separates the superimposed images and significantly im-
proves the performance with better output quality compared with
state-of-the-art methods.

Index Terms— Superimposed image decomposition, develop
then rival, two stage, reflection removal, rain removal.

1. INTRODUCTION
Visual confusion [1] (the perceptions of two different views are su-
perimposed onto the same space) is frequently encountered when
viewing a single superimposed image and may arise the ambigu-
ity for both human vision and computer vision. Thus, the topics
related to separating superimposed images including reflection re-
moval [2, 3], image de-raining [4, 5], etc., have long been important
tasks in computer vision field, which aim at not only generating high-
quality images in accordance with human vision, but also benefiting
the downstream computer vision tasks, e.g., image classification, ob-
ject detection, etc. Let I be the input image with superimposed lay-
ers, it can be approximately modeled as a combination of two image
layers I1 and I2, i.e., I = g(I1)+f(I2), where g(·) and f(·) denote
various degradations for I1 and I2, respectively. When only given
a single input image I , there are an infinite number of feasible de-
compositions to recover I1 and I2. Therefore, separating a single
superimposed image is an ill-posed problem [6], not only due to the
unknown mixing function, but also because of the lack of constraints
on the output space.

Previous statistics-based superimposed image separation meth-
ods have been studied for a long time [6]. However, these methods
need heavy user interactions or require a series of multiple mixed
inputs. Recently, deep learning-based approaches have been ex-
tensively studied on image decomposition related applications and
made great progress [4, 7–10]. Nevertheless, most of them only fo-
cused on one specific separation case, while a unified framework is
rarely considered. Gandelsman et al. [11] have proposed a unified
framework named “Double-DIP” for unsupervised image decompo-
sition. Although this method can well handle the input with regu-

lar mixed patterns, they struggle with the decomposition of natural
images. Zou et al. [12] have proposed a unified framework for su-
pervised image decomposition based on Generative Adversarial Net-
work (GAN). However, the separated two images still have residual
information from each other.

Human vision utilizes monocular rivalry to eliminate the ambi-
guity caused by visual confusion. For a single superimposed im-
age, human vision usually takes a while to develop monocular ri-
valry (Stage I), then alternatively activates/suppresses one image
layer [13, 14] to eliminate visual confusion during monocular ri-
valry (Stage II). For example, when looking through a transparent
glass, a transmission scene and a reflection scene can be seen simul-
taneously. Humans first need a while to understand and distinguish
the semantic information of the transmission layer and the reflection
layer, respectively. Then the attentions on two layers compete with
each other to form monocular rivalry, which causes that during one
period, only one layer is activated and another layer is suppressed.

In this work, inspired by this develop-then-rival process of hu-
man vision, we propose a unified two-stage framework for single su-
perimposed image separation. Similar to human vision, the first part
of our framework, termed a development stage, tries to understand
the features of the superimposed image and then roughly classifies
them into two layers. Since the main network in the development
stage requires a strong feature learning ability to better disentangle
superimposed features, contextual attention module [15, 16] is inte-
grated into the network. A multi-scale [17] crossroad perceptual loss
is introduced, which crossly compares the feature difference between
the outputs of multi-scale deconvolutional layers and ground truths,
thereby enforcing each deconvolutional layer to learn the task related
features. The second part of our framework, termed a rivalry stage,
simulates the activation/suppression process of monocular rivalry of
human vision, and tries to activate one superimposed layer and sup-
press another superimposed layer through a dual-pathway network.
In this stage, we introduce a “crossroad judgement”, which judges
the sequence and matches one activated prediction image (from the
development stage) to its target ground truth. Next we take the orig-
inal superimposed image and the activated layer as inputs, and then
use an activation net to enhance the activated layer and suppress an-
other layer. The proposed framework also follows the coarse-to-fine
generative process. Specifically, it first coarsely decomposes the su-
perimposed images into two parts, then further leverages this prior
information to activate the selected layer in the superimposed image
and refines to get a higher-quality image layer.

2. PROPOSED METHOD
In this section, we describe the proposed framework in detail. In
the first stage, we aim at simulating the development stage of human
vision on a single superimposed image, which tries to distinguish
the two layers of the superimposed image. For the second stage,
we aim at simulating the monocular rivalry stage of human vision,
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Fig. 1: An overview of the proposed method. The proposed method consists of two stages, including “Stage I: development stage” and “Stage
II: rivalry stage”.

which tries to activate one layer and suppress another layer. Fig. 1
demonstrates the overview of the proposed framework.

2.1. Stage I: Development Stage
We first introduce the development stage. Suppose x1 and x2 repre-
sent two individual images, and y = f(x1, x2) denotes the mixture
of them, where f(·) could be a linear or non-linear function. Our
objective is to distinguish x̂1 and x̂2 from a single mixed input y as
follows:

x̂1, x̂2 = GD(y), (1)
where GD denotes the proposed differentiation net (DiNet).

2.1.1. Network Architecture
The architecture of the proposed differentiation network is illustrated
in the “Stage I” part in Fig. 1. The DiNet GD is built based on the
configuration of the “U-Net” [12,18]. For the first four convolutional
layers in the encoder, We enlarge the receptive field by adding a
dilated convolutional layer after each convolutional layer. Moreover,
we use a non-local layer in the decoder part to better perceive the
whole image. We also leverages the contextual attention module [16]
(illustrated as CAM in Fig. 1, a.k.a, channel attention module) to
introduce global contextual information across channels for better
disentangling superimposed features.

2.1.2. Objective Function
The objective function of DiNet contains three terms: a crossroad
L1 loss, a separation critic Lcritic, and a multi-scale perceptual loss
LMP.

Crossroad L1 Loss. Since the order of the decomposition out-
puts is not specified, we use the crossroad L1 loss [12] to measure
the pixel-wise distance between the predicted outputs and the ground
truths, which is defined as:

Lcross = lcross((x̂1, x̂2), (x1, x2))
= min{d1,1 + d2,2, d1,2 + d2,1}, (2)

where di,j = ‖x̂i − xj‖ , i, j ∈ {1, 2}.

Separation Critic. To further improve the separation perfor-
mance, a decomposition prior learned through an adversarial train-
ing is introduced [12], which tries to distinguish the outputs (x̂1, x̂2)
and a pair of clean images (x1, x2). The discriminatorDC is defined
as:

LDC
critic = Exi∼pi(xi){logDC(x1, x2)}

+Ex̂i∼pi(x̂i){log(1−DC(x̂1, x̂2))},
(3)

where DC(x, y) is the probability that the pair (x, y) is a well-
separated (clean) image pair. The loss function of the generator GD

is defined as:

LGD
critic = Ex̂i∼pi(x̂i){− log(DC(x̂1, x̂2))}. (4)

Multi-scale Crossroad Perceptual Loss. Multi-scale losses are
proved to be effective in optimizing image decomposition tasks such
as de-raining [17] and reflection removal. A multi-scale loss first ex-
tracts features from different decoder layers and then feeds them into
a convolutional layer to form outputs at different scales. We adopt
the perceptual distance over different scales rather than other loss
functions in order to utilize both low-level and high-level informa-
tion. Since the order of the decomposition outputs of multiple scales
is also not specified, we introduce multi-scale crossraod perceptual
losses in this paper. We first propose a crossroad judgement to match
the predicted outputs to the ground truths:

x̂′1 = x̂i, x̂
′
2 = x̂j ,

s.t. min{di,1 + dj,2}, (5)

where di,1 = ‖x̂i − x1‖, dj,2 = ‖x̂j − x2‖, i, j ∈ {1, 2}, i 6= j,
x̂i, x̂j are the predicted outputs of the DiNet, x1, x2 are the ground
truths, and x̂′1, x̂′2 are the outputs after the crossroad judgement. By
crossly judging the distance between the outputs of the DiNet and
the ground truths, we can match the pair (x̂i, x̂j) to the ground truth
pair (x1, x2), and then match the pair (x̂′1, x̂′2) and (x1, x2) in order.
Then we define the multi-scale crossroad perceptual loss as:

LMP =

M∑
k=1

(λk(LVGG(x̂
′
1k , x1k ) + LVGG(x̂

′
2k , x2k ))), (6)
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Fig. 2: Qualitative comparison of superimposed image decomposition on two mixing datasets.

Table 1: Performance (PSNR / SSIM) of different methods for su-
perimposed image separation on two mixing datasets: 1) Dogs [20]
+ Flwrs [21], and 2) LSUN Classroom + LSUN Church [22]. (We
bold the best results and underline the second-best results. The same
highlight method is used in the following tables.)

Methods Dogs+Flwrs LSUN
Levin et al. [6] (TPAMI’07) 10.54 / 0.444 10.46 / 0.366
Double-DIP [11] (CVPR’19) 14.70 / 0.661 13.83 / 0.590
DAD [12] (CVPR’20) 25.51 / 0.849 26.32 / 0.883
DiNet 26.65 / 0.876 27.13 / 0.901
DiNet + AcNet 28.82 / 0.918 29.88 / 0.940

where x̂′1k , x̂
′
2k indicate the k-th outputs extracted from the decoder

layers, x1k , x2k indicate the ground truths which have the same scale
as x̂′1k and x̂′2k , and λk indicate the constraints for different scales.
LVGG is the well-known perceptual (feature) loss function [19].

Our overall loss function of DiNet is:
Ldi = α1Lcross + α2Lcritic + α3LMP, (7)

where α1, α2, α3 control the balance among different components
of the loss function, which are empirically set to 1, 0.0001, and 0.1,
respectively.
2.2. Stage II: Rivalry Stage
We then simulate the monocular rivalry stage of human vision. For
a mixed input y, during one period of monocular rivalry, only one
layer is activated. To this end, we first pass (x̂1, x̂2) through a cross-
road judgement module as described in Section 2.1.2 and get the pair
(x̂′1, x̂

′
2) matched in order with the ground truth (x1, x2) to decide

which layer to activate. Then we feed (x̂′1, x̂
′
2) with the mixed in-

put y together to the activation net to activate one layer and suppress
another layer of the mixed input:

x̂′′1 , x̂
′′
2 = GA(x̂

′
1, x̂
′
2, y), (8)

where GA is the proposed activation net (AcNet).

2.2.1. Network Architecture
The architecture of the proposed activation network (AcNet) is built
based on the Resnet generator [19] as illustrated in the “Stage II”
part in Fig. 1. A dual pathway parallel net is designed, of which
two pathways share weights with each other. For the obtained x̂′1 or
x̂′2, we first extract the hypercolumn features [23] from a pretrained
VGG-19 network [24], and then concatenate these features with x̂′1
or x̂′2, and the single mixed input y as an augmented network input.
The AcNet contains 7 cascaded CAM blocks of which the architec-
ture is the same with that in “Stage I”.

2.2.2. Objective Function
The objective function of the AcNet contains four terms: a pixel loss,
a feature loss, an adversarial loss, and a confusion loss.

Pixel Loss. To ensure that the outputs are as close to the ground
truths as possible, we utilize L1 loss to measure the pixel-wise dis-
tance between them, which is defined as:

Lpixel = E(x̂′′
i ,xi)∼pi(x̂

′′
i ,xi)
{L1(x̂

′′
i , xi)}. (9)

Table 2: Ablation studies for the architecture and losses of DiNet
on two mixing datasets: 1) Dogs [20] + Flwrs [21], and 2) LSUN
Classroom + LSUN Church [22].

Methods Dogs+Flwrs LSUN
basenet 25.55 / 0.850 26.05 / 0.880
w/o DC 26.54 / 0.872 27.20 / 0.902
w/o CA 26.44 / 0.868 26.86 / 0.896
w/o SA 26.48 / 0.870 27.13 / 0.901
w/o Lcritic 26.18 / 0.864 26.96 / 0.894
w/o LMP 26.17 / 0.864 26.93 / 0.892
rp LMP with LP 26.26 / 0.867 27.01 / 0.894
all combined 26.65 / 0.876 27.23 / 0.902

Table 3: Ablation studies for the architecture and losses of AcNet
on the Dogs [20] + Flwrs [21] dataset.

Methods w/o MI 3CAM w/o Ladv w/o Lfeat all combined
PSNR 27.34 27.63 28.92 27.92 28.82
SSIM 0.890 0.901 0.920 0.903 0.918

Feature Loss. We compute the feature loss by feeding the pre-
dicted output and the ground truth through a pretrained VGG-19
network respectively, then compute the L1 distance between the se-
lected feature layers. The feature loss in this work is defined as:

Lfeat = E(x̂′′
i ,xi)∼pi(x̂

′′
i ,xi)
{LVGG(x̂

′′
i , xi)}, (10)

where LVGG is the same as that mentioned in Section 2.1.2.
Adversarial Loss. To encourage the predicted output to be as

realistic as the ground-truth image layer, an adversarial loss [25] is
used to improve the realism of the predicted output. The loss func-
tion of the discriminator D is defined as:

LD
adv = E(x̂′′

i ,yi)∼pi(x̂
′′
i ,yi)
{logD(x̂′′i , yi)}

−E(xi,yi)∼pi(xi,yi){logD(xi, yi)},
(11)

and the loss function of the generator G is defined as:

LG
adv = −E(x̂′′

i ,yi)∼pi(x̂
′′
i ,yi)
{logD(x̂′′i , yi)}. (12)

Our overall loss function for AcNet is:

Lac = β1Lpixel + β2Lfeat + β3Ladv, (13)

where weighting coefficients β1, β2, β3 are empirically set to 1, 0.1,
0.0001, respectively.

3. EXPERIMENTAL VALIDATION
We evaluate the proposed method on 3 tasks, including 1) superim-
posed image separation, 2) single image reflection removal, 3) sin-
gle image rain removal. The experimental settings and results are
described and analyzed in detail as follows.

3.1. Separating Superimposed Images
As the basic task of this paper, we first evaluate the performance
of the proposed method on the task of separating superimposed im-
ages. We follow the experimental protocol in [12] and evaluate the
proposed method on two datasets of mixed image decomposition:
1) Stanford-Dogs (Dogs) [20] + VGG-Flowers (Flwrs) [21], and 2)
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Input Ground truth BDN DAD DiNet DiNet+AcNet

Fig. 3: Qualitative comparison of different methods for reflection
removal on two test datasets.

Table 4: Quantitative results (PSNR / SSIM) of different methods
for reflection removal on a real dataset [26].

Methods Real20 [26] Wild [2]
CEILNet [8] (ICCV’17) 19.04 / 0.762 22.14 / 0.819
Zhang et al. [26] (CVPR’18) 21.30 / 0.821 21.52 / 0.829
BDN [27] (ECCV’18) 20.06 / 0.738 22.34 / 0.821
ERRNet [3] (CVPR’19) 22.80 / 0.803 24.16 / 0.847
DAD [12] (CVPR’20) 22.36 / 0.846 24.80 / 0.922
DMGN [28] (TIP’21) 23.05 / 0.823 25.18 / 0.894
DiNet (proposed) 23.11 / 0.870 25.56 / 0.926
DiNet + AcNet (proposed) 23.80 / 0.877 25.69 / 0.929

LSUN Classroom + LSUN Church [22]. We follow the experimen-
tal settings in [12] to conduct the experiments. Table 1 presents
the quantitative comparison results of different methods for super-
imposed image decomposition on two mixing datasets in terms of
PSNR and SSIM. It manifests that our models achieve the best per-
formance in terms of both metrics on two datasets. To gain more
insight into the performance comparisons, we show some visualiza-
tion examples of the separation results in Fig. 2. The distinguished
regions are highlighted with red rectangles. It qualitatively manifests
that our DiNet and AcNet separate the superimposed image better
compared to DAD with less artifacts.

3.2. Ablation Studies

We further conduct ablation studies to investigate the effect of each
component in our DiNet and AcNet, respectively.

Ablation studies for DiNet. We first perform ablation experi-
ments on seven variants of the DiNet, which includes: 1) basenet,
whose structure is similar to the UNet, and loss functions are Lcross

and Lcritic, 2) w/o DC, which means without dilated convolutional
layer, 3) w/o CA, which indicates without channel attention module,
4) w/o SA, which represents without spatial attention module, 5) w/o
Lcritic, which means without adversarial lossLcritic 6) w/oLMP, which
implies without the multi-scale crossroad perceptual loss LMP, and
7) rp LMP with LP, which denotes replacing the multi-scale cross-
road perceptual loss LMP with only one crossroad perceptual loss
LP. Table 2 shows the results of the ablation experiments for DiNet,
which indicates all components together contribute to the final per-
formance.

Ablation studies for AcNet. We then perform ablation experi-
ments on five variants of the AcNet and present the results in Table
3. We observe significant improvement by incorporating the mixed
input to activate one layer rather than only refining the output from
the last stage, and less CAM number may decrease the performance.
We also analyze the contribution of each loss function in the AcNet,
and we notice that the perceptual loss Lfeat contributes the most to
the improvement.

Input Ground truth PReNet DiNet DiNet+AcNet

Fig. 4: Qualitative comparison of different methods for single image
rain removal task.

Table 5: Deraining results (PSNR / SSIM) of different methods on
Rain100H [29] and Rain800 [30].

Methods Rain100H [29] Rain800 [30]
DDN [9] (CVPR’17) 22.26 / 0.693 21.16 / 0.732
JORDER [29] (CVPR’17) 23.45 / 0.749 22.29 / 0.792
RESCAN [31] (ECCV’18) 26.45 / 0.846 24.09 / 0.841
PReNet [5] (CVPR’19) 29.46 / 0.899 - / -
DAD [12] (CVPR’20) 30.85 / 0.932 24.49 / 0.885
DiNet (proposed) 31.27 / 0.940 24.50 / 0.885
DiNet + AcNet (proposed) 31.82 / 0.946 25.04 / 0.896

3.3. Application: Single Image Reflection Removal
We conduct single image reflection removal experiments on two real
test datasets [2, 26]. We follow the common training/test meth-
ods which have been widely used in the literature [3, 12, 26, 28]
to conduct the experiments. The training data consists of two
parts, which include synthetic image pairs randomly synthesized
from clean Flickr images and real image pairs randomly cropped
from real-world images with reflections. Since the ground truths of
blurred reflection images are usually unavailable, we simply set the
ground truth of the second output as a “zero image” [12] and only
train one pathway of the AcNet during training. Table 4 shows the
quantitative results of different models for signle image reflection
removal on two real datasets [2, 26]. It manifests that the proposed
DiNet and DiNet+AcNet achieve the best performance in most real
cases. To gain more insight into the performance of different models
on the task of single image reflection removal, we visualize some
examples of the results generated by different models in Fig. 3. We
notice that our DiNet can remove the reflection more effectively than
other three models. Furthermore, with the help of AcNet, the entire
model can generate clearer and higher-quality background images.

3.4. Application: Single Image Rain Removal
We also conduct experiments for image de-raining on two datasets:
Rain100H [29], Rain800 [30]. We follow the training/testing split
in the original datasets of Rain100H [29] and Rain800 [30] to con-
duct the experiment, respectively. We report the performance of the
proposed methods and other methods in Table 5. Our methods out-
perform other SOTA methods in most entries. Figure 4 shows the
visual results for image de-raining. It can be seen that the DiNet and
AcNet can significantly reduce the artifacts after de-raining.

4. CONCLUSION
In this paper, inspired by the development then rivalry process of
human vision on a single superimposed image, we propose a unified
two-stage framework for separating superimposed images, which
mainly includes a differentiation net, an activation net, and multi-
ple loss functions. Experimental results indicate that the proposed
framework achieves the state-of-the-art performance on the super-
imposed image separation task and multiple related applications, in-
cluding single image reflection removal, single image de-raining,
etc.
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