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Abstract—A single superimposed image containing two im-
age views causes visual confusion for both human vision and
computer vision. Human vision needs a “develop-then-rival”
process to decompose the superimposed image into two individual
images, which effectively suppresses visual confusion. However,
separating individual image views from a single superimposed
image has been an important but challenging task in computer
vision area for a long time. In this paper, we propose a human
vision-inspired framework for single superimposed image decom-
position. We first propose a network to simulate the development
stage, which tries to understand and distinguish the semantic
information of the two layers of a single superimposed image.
To further simulate the rivalry activation/suppression process
in human brains, we carefully design a rivalry stage, which
incorporates the original mixed input (superimposed image),
the activated visual information (outputs of the development
stage) together, and then rivals to get images without ambiguity.
Experimental results show that our novel framework effectively
separates the superimposed images and significantly improves
the performance with better output quality compared with state-
of-the-art methods. The proposed method also achieves state-
of-the-art results on related applications including single image
reflection removal, single image rain removal, single image
shadow removal, and illumination correction, etc., which validates
the generalization of the framework.

Index Terms—Superimposed image decomposition, develop
then rival, reflection removal, rain removal, shadow removal,
illumination correction.

I. INTRODUCTION

V Isual confusion [1], [2] (the perceptions of two differ-
ent views are superimposed onto the same space) is
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frequently encountered when viewing a single superimposed
image and may arise the ambiguity for both human vision
and computer vision. Thus, the topics related to separating
superimposed images including reflection removal [3], [4],
image deraining [5], [6], shadow removal [7], [8], image
dehazing [9], etc., have long been important tasks in com-
puter vision field, which aim at not only generating high-
quality images in accordance with human vision, but also
benefiting the downstream computer vision tasks, e.g., image
classification, object detection, etc [10]. Let I be the input
image with superimposed layers, it can be approximately
modeled as a combination of two image layers I1 and I2,
i.e., I = g(I1) + f(I2), where g(·) and f(·) denote various
degradations for I1 and I2, respectively. When only given a
single input image I , there are an infinite number of feasible
decompositions to recover I1 and I2. Therefore, separating a
single superimposed image is an ill-posed problem [11], not
only due to the unknown mixing function, but also because of
the lack of constraints on the output space.

Previous statistics-based superimposed image separation
methods have been studied for a long time [11]–[14]. How-
ever, these methods need heavy user interactions or require
a series of multiple mixed inputs. Recently, deep learning-
based approaches have been extensively studied on image de-
composition related applications and made great progress [5],
[7], [9], [15]–[18]. Nevertheless, most of them only focused
on one specific separation case, while a unified framework
is rarely considered. Gandelsman et al. [19] have proposed
a unified framework named “Double-DIP” for unsupervised
image decomposition. Although this method can well handle
the input with regular mixed patterns, they struggle with the
decomposition of natural images. Zou et al. [20] have proposed
a unified framework for supervised image decomposition
based on Generative Adversarial Network (GAN). However,
the separated two images still have residual information from
each other.

Human vision utilizes monocular rivalry to eliminate the
ambiguity caused by visual confusion. For a single super-
imposed image, human vision usually takes a while to de-
velop monocular rivalry (Stage I), then alternatively acti-
vates/suppresses one image layer [21]–[23] to eliminate visual
confusion during monocular rivalry (Stage II). For example,
when looking through a transparent glass, a transmission scene
and a reflection scene can be seen simultaneously. Humans
first need a while to understand and distinguish the semantic
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information of the transmission layer and the reflection layer,
respectively. Then the attentions on two layers compete with
each other to form monocular rivalry, which causes that during
one period, only one layer is activated and another layer is
suppressed. In this work, inspired by this develop-then-rival
process of human vision, we propose a unified framework for
single superimposed image separation, which also consists of
a development stage and a rivalry stage.

Similar to human vision, the first part of our framework,
termed a development stage, tries to understand the features of
the superimposed image and then roughly classifies them into
two layers. Since the main network in the development stage
requires a strong feature learning ability to better disentangle
superimposed features, we first improve the basic network
[20] (a U-Net) to a differentiation net by incorporating the
contextual attention information [24], [25] for better feature
learning, as well as adding dilated convolutional layers and
non-local layers to original convolutional layers for enlarging
receptive field. Then, we introduce a multi-scale [26] crossroad
perceptual loss, which crossly compares the feature difference
between the outputs of multi-scale deconvolutional layers and
ground truths, thereby enforcing each deconvolutional layer to
learn the task related features.

The second part of our framework, termed a rivalry stage,
simulates the activation/suppression process of monocular
rivalry of human vision, and tries to activate one superimposed
layer and suppress another superimposed layer through a dual-
pathway network. Since the sequence of the two predicted
images obtained from the development stage may not match
the sequence of the two ground truths, in this stage, we
introduce a “crossroad judgement”, which judges the sequence
and matches one activated prediction image (from the de-
velopment stage) to its target ground truth. Next we take
the original superimposed image and the activated layer as
inputs, and then use an activation net to enhance the activated
layer and suppress another layer. Finally, to further improve
the perceptual quality of the outputs and avoid confusion,
we propose a confusion loss which restricts the residual
information left by the non-target images.

The proposed framework also follows the coarse-to-fine
generative process. Specifically, it first coarsely decomposes
the superimposed images into two parts, then further leverages
this prior information to activate the selected layer in the
superimposed image and refines to get a higher-quality image
layer. Compared to [20], our contextual attention module
and multi-scale crossroad perceptual loss can better separate
the superimposed images, and the proposed second network
can effectively remove the residual information of the two
separated images. In summary, our main contributions are:
• We propose a novel superimposed image decomposition

framework inspired by the “develop-then-rival” process
of human vision, which consists of a development stage
and a rivalry stage.

• In the development stage, we leverage the contextual
attention information within channels for better feature
learning, and propose the multi-scale crossroad perceptual
loss to enable the framework to learn the prior knowledge
of the decomposition as early as possible.

• In the rivalry stage, we propose a strategy to simulate the
activation/suppression process of monocular rivalry, and
introduce a confusion loss to suppress the information
from the non-target ground truth.

• Extensive experiments show that the proposed model
achieves state-of-the-art results on the superimposed im-
age separation task, as well as related applications, in-
cluding single image reflection removal, single image rain
removal, single image shadow removal, and illumination
correction, etc.

II. RELATED WORK

Visual confusion. The superimposition of two views of the
visual scene (i.e., two images in this paper) allows people to
see two different things in one direction, which may result
in visual confusion [27] and influence the perceptual quality
[2], [28]–[32]. In this paper, we only consider monocular
visual confusion (visual confusion within one eye), which may
lead to monocular rivalry [1], [21]. Monocular rivalry needs a
while to develop [21], [22] and it possibly occurs only with
attention competition [1]. O’Shea et al. [22] have presented
that the alternative of monocular rivalry is more dependent on
semantic attention processes. Therefore, applying contextual
attention for extracted features may improve the ability of
the decomposition network. Moreover, the peripheral area of
the eye and the eye movement enable human to perceive
the texture information from the non-fixation areas [33]. It
is also important to consider enlarging the receptive field of
the network.

Superimposed image separation. In the field of signal
processing, the separation of several individual signals from
the mixed input has been studied for a long time, which is
known as Blind Source Separation (BSS) [34]. Hyvarinen
et al. have proposed the Independent Component Analysis
(ICA) for BSS, which is based on the theorem that a sum of
independent variables tends to be a Gaussian distribution under
certain conditions. Based on the ICA, some statistics-based
methods have been proposed to measure the independence and
non-Gaussianity of the superimposed images for separating
individual layers from them, which require a series of multiple
mixed inputs [12]–[14] or additional user interactions [11],
while these additional parameters are not always available in
practice. Recently, an unsupervised method for superimposed
image separation named “Double-DIP” has been proposed
[19]. However, this work can handle the input with mixed
patterns, but may not perform well for natural image su-
perimposition separation. Zou et al. [20] have proposed a
supervised deep adversarial decomposition method (denoted
as DAD below) based on GAN. Nevertheless, the separated
two images still have residual information from each other and
the refinement for the obtained separated images is lacking.

Various separation tasks. Many computer vision tasks
can be expressed as the superimposed image decomposition
problem:

1) Single image reflection removal. An image with reflection
can be seen as a transmission layer image superimposed by
a reflection image. Some traditional methods of reflection
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Fig. 1. An overview of the proposed method. The proposed method consists of two stages, including “Stage I: development stage” and “Stage II: rivalry
stage”. In the development stage, the differentiation net GD tries to distinguish the mixed input as much as possible, which is trained under three losses
including “crossroad L1”, “separation critic DC”, and “multi-scale crossroad perceptual loss LMP”, respectively. In the rivalry stage, the activation net GA

tries to activate one layer from the mixed input by combining the information from “Stage I” and reduce the confusion, which is trained under four losses
including “pixel loss”, “feature loss”, “adversarial loss”, and “confusion loss”, respectively.

removal mainly focused on using multi-image approaches
[14] and hand-crafted priors such as smoothness prior [35],
ghosting cues [36], gradient sparsity constraint [37], etc., to
reduce the reflection effect. Recently, deep learning-based
methods have been used for the single image reflection re-
moval task [38] and have achieved great improvement. Fan
et al. [15] have proposed a two stage Convolutional Neural
Network (CNN), which first predicts the edge information of
the transmission layer image and then utilizes this information
to generate the reflection-free image. Yang et al. [39] have
designed a bidirectional network which alternately estimates
the transmission layer and the reflection layer to remove the
reflection. Zhang et al. [40] have employed the perceptual loss
[41] to improve the quality of restored images. Wei et al.
[4] have proposed an alignment invariant loss to resolve the
misaligned problem in training with real world data. Li et al.
[42] have designed a two-stage reflection removal framework
via reflection-aware guidance. Compared to this two-stage
model, our model focuses on a more basic task and can well
handle many related tasks.

2) Single image rain removal. A rainy image can be viewed
as the superimposition of a clean background layer and a
rain streak layer [43]. Some early works have considered rain
streaks as a kind of high frequency noise and used low-rank
constraints [44] or sparse coding [45] to solve the problem.
Recently, deep learning-based approaches have emerged for
single image rain removal [46]–[48] and achieved impressive
restoration performance. Fu et al. [46] have introduced a three
layer CNN on the high frequency domain of the image to

remove rain streaks. Yang et al. [49] have proposed a contin-
uous process to sequentially detect, estimate, and remove rain
streak. Zhang et al. [50] have applied generative adversarial
network (GAN) mechanism and perceptual loss function into
the single image rain removal task. Jiang et al. [10] have
proposed a multi-scale progressive fusion network (MSPFN)
to exploit the correlated information of rain streaks across
scales for single image deraining.

3) Single image shadow removal. An image with shadow
can also be viewed as the superimposition of a clean image
and a shadow mask. Conventional shadow removal methods
removed shadows based on hand-crafted features, such as
illumination invariant assumptions [51], edge and pixel fea-
tures [52], region level cues [53], etc. Recently, some deep
learning based methods have made significant performance
improvement on the shadow removal task. Qu et al. [17] have
proposed a multi-context architecture named DeshadowNet for
single image shadow removal. Wang et al. [8] have designed
a stacked conditional Generative Adversarial Network (ST-
CGAN) for joint learning shadow detection and shadow re-
moval. Ding et al. [7] have proposed an attentive recurrent
generative adversarial network (ARGAN) to progressively
remove shadow.

4) Illumination correction. A low-light image can be seen
as the superimposition of a normal-light image with some
perturbations (such as noise, exposure, etc.) [54]. Traditional
low-light enhancement methods have adjusted the illumination
uniformly based on histogram equalization [55] or adjusted
adaptively based on retinex methods [56], which may result
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in under-exposed or over-exposed local details. Recently, some
deep learning based methods have achieved better performance
for low-light enhancement [57], such as GAN based method
[58] or two-stage semi-supervised method [59], [60].

5) Unified framework. The works mentioned above only
focused on one specific application, and two recent studies
[20], [61] have made attempts to solve different tasks of image
restoration [62]–[64] in a unified framework. Zou et al. [20]
have proposed a superimposed image decomposition method
based on adversarial supervision, which can be generalized to
various image separation tasks. Feng et al. [61] have designed
a unified framework to recover the background information of
images with various noise based on deep noise estimation.

III. PROPOSED METHOD

In this section, we describe the proposed framework in
detail. In the first stage, we aim at simulating the development
stage of human vision when viewing a single superimposed
image, which tries to distinguish the two layers of the super-
imposed image. For the second stage, we aim at simulating the
monocular rivalry stage of human vision, which tries to acti-
vate one layer and suppress another layer. Fig. 1 demonstrates
the overview of the proposed framework.

A. Stage I: Development Stage
We first introduce the development stage. Suppose x1 and

x2 represent two individual images, and y = f(x1, x2) denotes
the mixture of them, where f(·) could be a linear or non-linear
function. Our objective is to distinguish x̂1 and x̂2 from a
single mixed input y as follows:

x̂1, x̂2 = GD(y), (1)

where GD denotes the proposed differentiation net (DiNet).
1) Network Architecture: The architecture of the proposed

differentiation network is illustrated in the “Stage I” part in
Fig. 1. The DiNet GD is built based on the configuration
of the “U-Net” [20], [65]. Intuitively, this autoencoder with
skip connection structure can better extract and disentangle
the superimposed features and coarsely recover two layers.
Since it may introduce unexpected artifacts and arise stability
issues [66], we do not use the batch-normalization in GD.
As mentioned above, it is important to consider enlarging the
receptive field of the network to distinguish visual confusion.
Therefore, for the first four convolutional layers in the encoder,
we enlarge the receptive field by adding a dilated convolutional
layer after each convolutional layer. Moreover, we use a non-
local layer [67] in the decoder part to better perceive the whole
image.

Inspired by the attention mechanism under development
stage of human vision, we also consider the context be-
tween channels (image features) for the differentiation net.
In this paper, we leverage the contextual attention module
[25] (illustrated as CAM in Fig. 1, a.k.a, channel attention
module) to introduce global contextual information across
channels for better disentangling superimposed features. Let
U ∈ RH×W×C denote the input feature block of the CAM,
where H × W indicates the spatial scale, C represents the
channel number, we first refine the feature block U with two

convolutional layers to produce V ∈ RH×W×C . Then we
apply a global average pooling A to each feature channel of V
to obtain the channel-specific descriptor vector Z ∈ R1×1×C ,
which can be expressed as Z = A(V ). After passing this
channel descriptor vector Z through an attention module,
which includes a down-sampling linear convolution layer, a
ReLu layer, an up-sampling linear convolution layer and a
sigmoid layer, the attention descriptor S ∈ R1×1×C for the
feature block V is generated. This attention descriptor S
serves as the channel-specific gate for calibrating the feature
block V via: V̂ = S · V . Finally, a residual architecture with
reference to the input for easier optimization is implemented
by: Û = V̂ +U , to produce the output feature vector Û of the
CAM.

2) Objective Function: The objective function of DiNet
contains three terms: a crossroad L1 loss, a separation critic,
and a multi-scale perceptual loss.

Crossroad L1 Loss. The DiNet GD is trained to minimize
the distance between its outputs (x̂1, x̂2) and their ground
truths (x1, x2). Since the order of the decomposition outputs
is not specified, we use the crossroad L1 loss [20] to measure
the pixel-wise distance between the predicted outputs and the
ground truths, which is defined as:

lcross((x̂1, x̂2), (x1, x2))
= min{d1,1 + d2,2, d1,2 + d2,1},

(2)

where di,j = ‖x̂i − xj‖ , i, j ∈ {1, 2}. Hence, this objective
function on an entire dataset can be expressed as:

Lcross = Exi∼pi(xi){lcross((x̂1, x̂2), (x1, x2))}, (3)

in which i ∈ {1, 2}, and pi(xi) indicates the distribution of
the image data.

Separation Critic. To further improve the separation perfor-
mance, a decomposition prior learned through an adversarial
training is introduced [20], which tries to distinguish the
outputs (x̂1, x̂2) and a pair of clean images (x1, x2). The
discriminator DC is defined as:

LDC

critic = Exi∼pi(xi){logDC(x1, x2)}
+Ex̂i∼pi(x̂i){log(1−DC(x̂1, x̂2))},

(4)

where DC(x, y) is the probability that the pair (x, y) is a well-
separated (clean) image pair. The structure of the discriminator
DC is the same as pix2pix [68], of which the two input images
are simply concatenated at the input end. The loss function of
the generator GD is defined as:

LGD

critic = Ex̂i∼pi(x̂i){− log(DC(x̂1, x̂2))}. (5)

The adversarial training of GD and DC is a minimax opti-
mization process, where GD tries to minimize the objective
function while DC tries to maximize it.

Multi-scale Crossroad Perceptual Loss. Multi-scale losses
are proved to be effective in optimizing image decomposition
tasks such as de-raining [26] and reflection removal [18]. A
multi-scale loss first extracts features from different decoder
layers and then feeds them into a convolutional layer to
form outputs at different scales. By comparing the perceptual
(feature) distance between these multi-scale outputs to those
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real images with the corresponding scales, multi-scale percep-
tual losses can be obtained, which enable the net to capture
more contextual information from various scales. We adopt
the perceptual distance over different scales rather than other
loss functions in order to utilize both low-level and high-level
information. However, the order of the decomposition outputs
of multiple scales is also not specified. Therefore, we introduce
multi-scale crossraod perceptual losses in this paper. We first
propose a crossroad judgement to match the predicted outputs
to the ground truths:

x̂′1 = x̂i, x̂
′
2 = x̂j ,

s.t. min{di,1 + dj,2},
(6)

where di,1 = ‖x̂i − x1‖, dj,2 = ‖x̂j − x2‖, i, j ∈ {1, 2},
i 6= j, x̂i, x̂j are the predicted outputs of the DiNet, x1, x2
are the ground truths, and x̂′1, x̂

′
2 are the outputs after the

crossroad judgement. By crossly judging the distance between
the outputs of the DiNet and the ground truths, we can match
the pair (x̂i, x̂j) to the ground truth pair (x1, x2), and then
match the pair (x̂′1, x̂

′
2) and (x1, x2) in order. Then we define

the multi-scale crossroad perceptual loss as:

LMP =

M∑
k=1

(λk(LVGG(x̂
′
1k
, x1k) + LVGG(x̂

′
2k
, x2k))), (7)

where x̂′1k , x̂
′
2k

indicate the k-th outputs extracted from the
decoder layers, x1k , x2k indicate the ground truths which have
the same scale as x̂′1k and x̂′2k , and λk indicate the constraints
for different scales. LVGG (perceptual (feature) loss [41]) is
defined as LVGG(x, y) =

∑
l ωl ‖φl(x)− φl(y)‖1, where φl

indicates the l-th layer in the VGG network, and {ωl} are
used to balance the terms in the loss function. Specifically, in
our implementation, we set M = 3, and the outputs of the
last 1st, 3rd, 5th layers are used, whose sizes are 1, 1

2 , 1
4 of

the original size, respectively. λ1, λ2, λ3 are set to 1, 0.8,
0.6, respectively. We use VGG-19 [69] as the backbone of the
perceptual loss function, where the weights ωl are the same
as that in [40].

Our overall loss function of DiNet is:

Ldi = α1Lcross + α2Lcritic + α3LMP, (8)

where α1, α2, α3 control the balance among different com-
ponents of the loss function, which are empirically set to 1,
0.0001, and 0.1, respectively.

B. Stage II: Rivalry Stage

We then simulate the monocular rivalry stage of human
vision. For a mixed input y, during one period of monocular
rivalry, only one layer is activated. To this end, we first pass
(x̂1, x̂2) through a crossroad judgement module as described in
Section III-A2 and get the pair (x̂′1, x̂

′
2) matched in order with

the ground truth (x1, x2) to decide which layer to activate.
Then we feed (x̂′1, x̂

′
2) with the mixed input y together to the

activation net to activate one layer and suppress another layer
of the mixed input:

x̂′′1 , x̂
′′
2 = GA(x̂

′
1, x̂
′
2, y), (9)

where GA is the proposed activation net (AcNet).

1) Network Architecture: The architecture of the proposed
activation network (AcNet) is built based on the Resnet
generator [41] as illustrated in the “Stage II” part in Fig.
1. A dual pathway parallel net is designed, of which two
pathways share weights with each other. For the obtained x̂′1
or x̂′2, we first extract the hypercolumn features [70] from a
pretrained VGG-19 network [69], and then concatenate these
features with x̂′1 or x̂′2 as an augmented network input. This
augmentation strategy for the input enables the network to
learn more semantic clues from the image [40]. We further
concatenate the single mixed input y to the input which aims
at utilizing the complete texture information from y. Then we
feed the input into our AcNet. The AcNet contains 7 cascaded
CAM blocks of which the architecture is the same with that in
“Stage I”. Moreover, we add the skip connection between the
second convolutional layer and the second to last convolutional
layer as the residual structure for easier optimization. Through
the AcNet, we can reduce the confusion and improve the
quality of the outputs from the DiNet.

2) Objective Function: The objective function of the AcNet
contains four terms: a pixel loss, a feature loss, an adversarial
loss, and a confusion loss.

Pixel Loss. To ensure that the outputs are as close to the
ground truths as possible, we utilize L1 loss to measure the
pixel-wise distance between them, which is defined as:

Lpixel = E(x̂′′
i ,xi)∼pi(x̂′′

i ,xi){L1(x̂
′′
i , xi)}. (10)

Feature Loss. We compute the feature loss by feeding the
predicted output and the ground truth through a pretrained
VGG-19 network respectively, then compute the L1 distance
between the selected feature layers. The feature loss in this
work is defined as:

Lfeat = E(x̂′′
i ,xi)∼pi(x̂′′

i ,xi){LVGG(x̂
′′
i , xi)}, (11)

where LVGG is the same as that mentioned in Section III-A2.
Adversarial Loss. To encourage the predicted output to be

as realistic as the ground-truth image layer, an adversarial loss
[68] is used to improve the realism of the predicted output.
The loss function of the discriminator D is defined as:

LD
adv = E(x̂′′

i ,yi)∼pi(x̂′′
i ,yi){logD(x̂′′i , yi)}

−E(xi,yi)∼pi(xi,yi){logD(xi, yi)},
(12)

and the loss function of the generator G is defined as:

LG
adv = −E(x̂′′

i ,yi)∼pi(x̂′′
i ,yi){logD(x̂′′i , yi)}. (13)

The structure of discriminator is also the same as pix2pix [68].
It is worth nothing that the function of this adversarial loss is
to improve the quality of the output, while the Eq. (4) and Eq.
(5) is used for better separating two layers.

Confusion Loss. We further propose a confusion loss to
reduce the confusion content from the non-target image which
is calculated in gradient domain. As discussed in [40], the
edges of two ground truths are unlikely to overlap, however,
numerically, the correlation between the gradient maps of these
two images is still countable. In this paper, we modify the
exclusion loss proposed in [40] and calculate the residual
confusion loss. We first calculate the correlation between the
output and the non-target ground truth in gradient domain,
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Input Ground truth DAD DiNet DiNet+AcNet Input Ground truth DAD DiNet DiNet+AcNet

Classrooms

Churches

Dogs

Flowers

Fig. 2. Qualitative comparison of superimposed image decomposition on two mixing datasets. Above dashed line: superimposed image decomposition on
Dogs+Flwrs. Under dashed line: superimposed image decomposition on LSUN mixed dataset. Our methods can separate the two layers of a superimposed
image with less artifacts from the undesired layer, particularly in the regions indicated by bounding boxes. Best viewed in zoom-in mode.

TABLE I
PERFORMANCE (PSNR / SSIM) OF DIFFERENT METHODS FOR

SUPERIMPOSED IMAGE SEPARATION ON TWO MIXING DATASETS: 1) DOGS
[71] + FLWRS [72], AND 2) LSUN CLASSROOM + LSUN CHURCH [73].
∗: TRAINED ON IMAGENET. #: TRAINED ON DEFAULT DATASETS. (WE

BOLD THE BEST RESULTS AND UNDERLINE THE SECOND-BEST RESULTS.
THE SAME HIGHLIGHT METHOD IS USED IN THE FOLLOWING TABLES.)

Methods Dogs+Flwrs LSUN

Levin et al. [11] (TPAMI’07) 10.54 / 0.444 10.46 / 0.366
Double-DIP [19] (CVPR’19) 14.70 / 0.661 13.83 / 0.590
DAD [20] (CVPR’20) ∗ 23.32 / 0.803 21.63 / 0.773
DAD [20] (CVPR’20) # 25.51 / 0.849 26.32 / 0.883
DiNet 26.65 / 0.876 27.13 / 0.901
DiNet + AcNet 28.93 / 0.921 30.47 / 0.947

and the correlation between the target ground truth and the
non-target ground truth in gradient domain, respectively. Then
we formulate the confusion loss as the residual correlation by
calculating the difference between these two correlations:

Lconf = E(x̂′′
i ,xi)∼pi(x̂′′

i ,xi)

{‖ψ(x̂′′1 , x2)− ψ(x1, x2)‖2 + ‖ψ(x̂′′2 , x1)− ψ(x2, x1)‖2},
(14)

ψ(x, y) = σ(λx|Ox|)� σ(|Oy|), (15)

where O is the gradient, λx =

∑
|Oy|∑
|Ox|

is used as the nor-

malization factor, σ denotes the sigmoid function, � indicates
the element-wise multiplication. By minimizing the confusion,
we aim at reducing the confusion content from the non-target
ground truth while keeping the texture information from the
target ground truth.

Our overall loss function for AcNet is:

Lac = β1Lpixel + β2Lfeat + β3Ladv + β4Lconf, (16)

where weighting coefficients β1, β2, β3, β4 are empirically set
to 1, 0.1, 0.0001, 0.1, respectively.

TABLE II
ABLATION STUDIES FOR THE ARCHITECTURE AND LOSSES OF DINET ON

TWO MIXING DATASETS: 1) DOGS [71] + FLWRS [72], AND 2) LSUN
CLASSROOM + LSUN CHURCH [73]. THE PERFORMANCE IS FORMATTED

AS PSNR / SSIM

Methods Dogs+Flwrs LSUN

basenet 25.55 / 0.850 26.05 / 0.880
w/o DC 26.54 / 0.872 27.20 / 0.902
w/o CA 26.44 / 0.868 26.86 / 0.896
w/o SA 26.48 / 0.870 27.13 / 0.901

w/o Lcritic 26.18 / 0.864 26.96 / 0.894
w/o LMP 26.17 / 0.864 26.93 / 0.892
rp LMP with LP 26.26 / 0.867 27.01 / 0.894

all combined 26.65 / 0.876 27.23 / 0.902

C. Implementation Details

We implement the proposed framework in Pytorch on a
server with an Nvidia Geforce RTX 2080 Ti GPU. Generally,
the DiNet is trained for 100 epochs first with a batch size of 2,
using the Adam optimizer [74]. Then, we freeze the weights
of the DiNet, and only train the AcNet for 100 epochs with the
batch size of 2, using the Adam optimizer, too. The learning
rates of two networks are both set to 0.0001. For some datasets,
the DiNet and the AcNet are trained for more than 100 epochs,
respectively. The learning rate is decayed by ten times from
100 epochs. We set α2 and β3 to 0 for the first 5 epochs, and
then set them to 0.0001 for the rest epochs, respectively.

IV. EXPERIMENTAL VALIDATION

We evaluate the proposed method on 5 tasks, including
1) superimposed image separation, 2) single image reflection
removal, 3) single image rain removal, 4) single image shadow
removal, and 5) single image low-light enhancement. The
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TABLE III
ABLATION STUDIES FOR THE ARCHITECTURE AND LOSSES OF ACNET ON THE DOGS [71] + FLWRS [72] DATASET.

Methods UNet 1 UNet 2 w/o MI 1CAM 3CAM 4CAM 5CAM 6CAM w/o Ladv w/o Lfeat w/o Lconf all combined

PSNR 27.24 27.28 27.34 27.27 27.63 28.34 28.61 28.93 28.92 27.92 28.82 29.03
SSIM 0.892 0.892 0.890 0.895 0.901 0.913 0.916 0.922 0.920 0.903 0.918 0.922

… …Predicted ො𝑥2
′

VGG19 features

Single mixed input 𝑦 = 𝑓(𝑥1, 𝑥2)

Predicted ො𝑥2
′′

… …
Predicted ො𝑥2

′

VGG19 

features

Single mixed input 𝑦 = 𝑓(𝑥1, 𝑥2)
Predicted ො𝑥2

′′

…

(a)

(b)

Fig. 3. The architecture of two UNets in Table III.

experimental settings and results are described and analyzed
in detail as follows.

A. Separating Superimposed Images

Experimental settings. As the basic task of this paper,
we first evaluate the performance of the proposed method
on the task of separating superimposed images. We follow
the experimental protocol in [20] and evaluate the proposed
method on two datasets of mixed image decomposition: 1)
Stanford-Dogs (Dogs) [71] + VGG-Flowers (Flwrs) [72], and
2) LSUN Classroom + LSUN Church [73]. Following Zou
et al. [20], we use the original training/testing split in these
datasets [71]–[73] to conduct the experiments. During training,
we randomly choose two images (x1, x2) from the two subsets
of one group then linearly mix them with a value α to get the
mixed input y as: y = f(x1, x2) = αx1 + (1 − α)x2, where
α ∈ [0.4, 0.6]. During evaluation, we use the same sequence
as in [20] to mix two images with a constant α value of 0.5.
Overall, we randomly produce 6149 pairs of Dogs+Flwrs and
126227 pairs of LSUN Classroom+Church for each epoch
of the training process, and fixedly generate 1020 pairs of
Dogs+Flwrs and 300 pairs of LSUN Classroom+Church for
the testing process. The DiNet and AcNet are trained for 100
epochs on the Dogs+Flwrs dataset, and trained for 20 epochs
on the LSUN Classroom+Church dataset (due to the large
number of images in this dataset), respectively.

We compare the proposed model with three popular meth-
ods for single superimposed image decomposition, including
one user-interaction needed method (Levin et al.) [11], one
unsupervised method (Double-DIP) [19], and one supervised
method (DAD) [20].

Results. Table I presents the quantitative comparison results
of different methods for superimposed image decomposition
on two mixing datasets in terms of PSNR and SSIM. It
manifests that our model achieves the best performance in
terms of both metrics on two datasets. We further observe that
the performances of Levin et al. and Double-DIP are inferior to
other methods, which is ascribed to that the former one heavily
needs user-interaction and the latter one is an unsupervised
method, and both of them can hardly work on separating the
superimposition of two complex images. It is worth mention-
ing that our DiNet achieves significant improvement compared
with DAD, and the DiNet+AcNet distinctly outperforms these
one-stage methods. To gain more insight into the performance
comparisons, we show some visualization examples of the
separation results in Fig. 2. The distinguished regions are
highlighted with red rectangles. It qualitatively manifests that
our DiNet separates the superimposed image better compared
to DAD with less artifacts. Moreover, after the process of
AcNet, the residual information from the non-target image can
be reduced and the overall image color can be corrected, which
further justifies the superiority of our two-stage method.

B. Ablation Studies

We further conduct ablation studies to investigate the effect
of each component in our DiNet and AcNet, respectively.

Ablation studies for DiNet. We first perform ablation
experiments on seven variants of the DiNet, which includes: 1)
basenet, whose structure is similar to the UNet in [68], [76],
and loss functions are Lcross and Lcritic, 2) w/o DC, which
means without dilated convolutional layer, 3) w/o CA, which
indicates without channel attention module, 4) w/o SA, which
represents without spatial attention module, 5) w/o Lcritic,
which means without adversarial loss Lcritic 6) w/o LMP, which
implies without the multi-scale crossroad perceptual loss LMP,
and 7) rp LMP with LP, which denotes replacing the multi-
scale crossroad perceptual loss LMP with only one crossroad
perceptual loss LP.

Table II shows the results of the ablation experiments for
DiNet. To investigate the contribution of each component
in DiNet, we first compare the performances of w/o DC,
w/o CA, and w/o SA. It can be observed that all these
three modules have benefits to the final performance, and
the channel attention module contributes more than other two
modules. Intuitively, the channel attention module promotes
the learning of feature attention, thus better help disentangle
the features of the superimposed image. Table II also presents
the performance of DiNet without the adversarial loss Lcritic
and the multi-scale crossroad perceptual loss LMP. We observe
that both losses yield notable performance improvement while
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(a) Input (b) Ground truth (d) BDN (e) DAD(c) Zhang et al. (f) DiNet (Ours) (g) DiNet+AcNet (Ours)

Fig. 4. Qualitative comparison of different methods for reflection removal on two test datasets. 1st, 2nd, and 3rd rows: on BDN [39] dataset. 4th, 5th, and
6th rows: on the dataset of Zhang et al. [40]. Our methods are able to restore clearer background images with less artifacts than other methods.

TABLE IV
QUANTITATIVE EVALUATION (PSNR / SSIM) OF DIFFERENT METHODS FOR IMAGE REFLECTION REMOVAL ON TWO CHALLENGING SYNTHETIC

DATASETS [75] AND [39].

Methods
Dataset [75]

Methods Dataset [39]
Focused set Defocused set Ghosting set

CEILNet [15] (ICCV’17) 19.52 / 0.742 20.12 / 0.735 19.68 / 0.753 Li & Brown [35] (CVPR’14) 16.46 / 0.745
Zhang et al. [40] (CVPR’18) 17.09 / 0.712 18.10 / 0.758 17.88 / 0.738 SIRP [37] (CVPR’17) 19.18 / 0.760
BDN [39] (ECCV’18) 14.25 / 0.632 14.05 / 0.639 14.78 / 0.660 CEILNet [15] (ICCV’17) 19.80 / 0.782
RmNet [75] (CVPR’19) 21.06 / 0.770 22.89 / 0.840 21.00 / 0.780 BDN [39] (ECCV’18) 23.11 / 0.835
DAD [20] (CVPR’20) 22.80 / 0.871 23.19 / 0.891 23.26 / 0.881 DAD [20] (CVPR’20) 23.18 / 0.877
DiNet (proposed) 24.19 / 0.893 24.78 / 0.916 24.80 / 0.904 DiNet (proposed) 24.21 / 0.899
DiNet + AcNet (proposed) 24.94 / 0.908 26.07 / 0.938 25.70 / 0.919 DiNet + AcNet (proposed) 25.56 / 0.916

LMP has relatively larger contribution. To further verify our
supposition that learning decomposition earlier will contribute
to the final performance, we replace the multi-scale crossroad
perceptual loss LMP with the crossroad perceptual loss LP
which only acts on the last layer. Comparing the performance
of rp LMP with LP and the performance of w/o LMP, the
improvement caused by LP is not obvious. Intuitively, the LMP
may suppress the congestion from the non-target image.

Ablation studies for AcNet. We then perform ablation
experiments on eleven variants of the AcNet and present the
results in Table III. To verify the effectiveness of the architec-

ture, we first compare our AcNet with two UNet structures
as shown in Fig. 3. We notice that adopting UNet as the
second stage cannot yield notable improvement compared to
our AcNet. We then analyze the architecture of our AcNet. We
observe significant improvement by incorporating the mixed
input to activate one layer rather than only refining the output
from the last stage, as indicated by w/o MI. In this paper, 7
CAMs are used in the AcNet, so we also consider reducing the
number of CAMs to investigate the performance of AcNet. As
shown by the performances of 1CAM, 3CAM, 4CAM, 5CAM,
6CAM, and all combined in Table III, we notice that when
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(a) Input (b) Ground truth (d) DIDMDN (e) PreNet(c) RESCAN (f) DiNet (Ours) (g) DiNet+AcNet (Ours)

Fig. 5. Qualitative comparison of different methods for single image rain removal on Test100 [50] dataset.

TABLE V
QUANTITATIVE RESULTS (PSNR / SSIM) OF DIFFERENT METHODS FOR

REFLECTION REMOVAL ON A REAL DATASET [40].

Methods Real20 [40] Wild [3]

CEILNet [15] (ICCV’17) 19.04 / 0.762 22.14 / 0.819
Zhang et al. [40] (CVPR’18) 21.30 / 0.821 21.52 / 0.829
BDN [39] (ECCV’18) 20.06 / 0.738 22.34 / 0.821
ERRNet [4] (CVPR’19) 22.80 / 0.803 24.16 / 0.847
DAD [20] (CVPR’20) 22.36 / 0.846 24.80 / 0.922
DMGN [61] (TIP’21) 23.05 / 0.823 25.18 / 0.894
Li et al. [42] (arxiv’21) 22.95 / 0.793 25.52 / 0.880
DiNet (proposed) 23.11 / 0.870 25.56 / 0.926
DiNet + AcNet (proposed) 23.80 / 0.877 25.69 / 0.929

the number of CAM modules is larger than 5, increasing
the number of CAMs has less effect on the performance
improvement. Thus 7 CAMs are adopted in this paper. We also
analyze the contribution of each loss function in the AcNet,
as indicated by w/o Ladv, w/o Lfeat, and w/o Lconf in Table III.
We notice that all loss functions have contributions to promote
the performance, while the perceptual loss Lfeat contributes the
most to the improvement.

Model size comparison with [20]. The model size of our
DiNet in the first stage is about 61.04 M. Compared with Zou
et al. [1], of which the model size is about 54.1 M, our model
can achieve much better results. Moreover, the AcNet in the
second stage is about 11.58 M, which is a more slight but
efficient module.

C. Application: Single Image Reflection Removal

Experimental settings. We conduct single image reflection
removal experiments on two synthetic datasets [39], [75]
and two real datasets [3], [40]. The synthetic dataset Syn
[75] contains three types of reflections including “focused”,
“defocused” and “ghosting”, which are synthesized using
adversarial training. Each reflection type includes 4000 images
for training and 100 images for testing, which results in 12000
training images and 300 test images in total. The dataset BDN

[39] synthesized the images with reflections by linearly mixing
the clear transmission layer and blurred reflection layer, which
contains 50000 training images and 400 test images. To vali-
date the generalization ability of our model to real cases, two
real datasets including real20 [40] and wild [3] are involved in
the experiments. We follow the common training/test methods
which have been widely used in the literature [4], [20], [40],
[61] to conduct the experiments. The training data consists
of two parts, which include synthetic image pairs randomly
synthesized from clean Flickr images and real image pairs
randomly cropped from real-world images with reflections.
The two test datasets real20 [40] and wild [3] contain 20 real-
world image pairs with reflections across various scenes and
55 image pairs collected from the wild scenes, respectively.
Since the ground truths of blurred reflection images are usually
unavailable, we simply set the ground truth of the second
output as a “zero image” [20] and only train one pathway
of the AcNet during training.

We compare our model with state-of-the-art methods for
single image reflection removal including: Li & Brown [35],
which removes reflections using relative smoothness; SIRP
[37], that suppresses reflections based on a Laplacian data
fidelity term and a sparsity term; CEILNet [15], which presents
a cascaded edge and image learning network for reflection
removal; Zhang et al. [40], which proposes to solve reflec-
tion removeal problem by perceptual loss; BDN [39], which
improves the restoration quality by a bidirectional network
that alternately estimates the transmission image and the
reflection image; RmNet [75], which uses GAN to remove
reflection; ERRNet [4], which focuses on resolving the mis-
aligned problem in real training data and leveraging the multi-
scale context; DAD [20], which proposes a unified framework
for separating superimposed images by GAN; and DMGN
[61], which designs a unified framework for superimposed
image restoration by estimating the noise mask.

Results. Table IV presents the quantitative results of differ-
ent models for single image reflection removal on two syn-
thetic datasets [39], [75]. It manifests that both of our DiNet
and DiNet+AcNet outperform other state-of-the-art models on
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(a) Input (b) Ground truth PreNet (e) DiNet (Ours)(c) JORDER (f) Rain streak (Ours) (g) DiNet+AcNet (Ours)

Fig. 6. Qualitative comparison of different methods for single image rain removal on Rain100H [49] dataset.

TABLE VI
PERFORMANCE OF DIFFERENT MODELS FOR SINGLE IMAGE RAIN REMOVAL ON FOUR DATASETS: RAIN100L [49], TEST2800 [16], TEST1200 [77],

TEST100 [50], IN TERMS OF PSNR, SSIM, AND FSIM. HIGHER VALUE INDICATES BETTER PERFORMANCE.

Methods
Dataset

Test100 [50] Rain100L [49] Test1200 [77] Test2800 [16] Average

DerainNet [46] (TIP’17) 22.77 / 0.810 / 0.884 27.03 / 0.884 / 0.904 23.38 / 0.835 / 0.924 24.31 / 0.861 / 0.930 24.37 / 0.847 / 0.910
RESCAN [78] (ECCV’18) 25.00 / 0.835 / 0.909 29.80 / 0.881 / 0.919 30.51 / 0.882 / 0.944 31.29 / 0.904 / 0.952 29.14 / 0.874 / 0.930
DIDMDN [77] (CVPR’18) 22.56 / 0.818 / 0.899 25.23 / 0.741 / 0.861 29.65 / 0.901 / 0.950 28.13 / 0.867 / 0.943 26.38 / 0.831 / 0.913
UMRL [79] (CVPR’19) 24.41 / 0.829 / 0.910 29.18 / 0.923 / 0.940 30.55 / 0.910 / 0.955 29.97 / 0.905 / 0.955 28.52 / 0.892 / 0.939
SEMI [80] (CVPR’19) 22.35 / 0.788 / 0.887 25.03 / 0.842 / 0.893 26.05 / 0.822 / 0.917 24.43 / 0.782 / 0.897 24.46 / 0.808 / 0.898
PreNet [6] (CVPR’19) 24.81 / 0.851 / 0.916 32.44 / 0.950 / 0.956 31.36 / 0.911 / 0.955 31.75 / 0.916 / 0.956 30.08 / 0.906 / 0.945
MSPFN [10] (CVPR’20) 27.50 / 0.876 / 0.928 32.40 / 0.933 / 0.943 32.39 / 0.916 / 0.960 32.82 / 0.930 / 0.966 31.27 / 0.913 / 0.948
DiNet (proposed) 27.42 / 0.922 / 0.930 30.40 / 0.959 / 0.958 30.29 / 0.932 / 0.954 31.24 / 0.954 / 0.962 29.83 / 0.941 / 0.951
DiNet + AcNet (proposed) 27.80 / 0.931 / 0.950 34.32 / 0.979 / 0.977 32.43 / 0.952 / 0.962 33.67 / 0.969 / 0.974 32.05 / 0.957 / 0.965

TABLE VII
DERAINING RESULTS (PSNR / SSIM) OF DIFFERENT METHODS ON

RAIN100H [49].

Methods Rain100H [49]

DDN [16] (CVPR’17) 22.26 / 0.693
JORDER [49] (CVPR’17) 23.45 / 0.749
RESCAN [78] (ECCV’18) 26.45 / 0.846
DIDMDN [77] (CVPR’18) 25.00 / 0.754
DAF-Net [5] (CVPR’19) 28.44 / 0.874
PReNet [6] (CVPR’19) 29.46 / 0.899
DAD [20] (CVPR’20) 30.85 / 0.932
DiNet (proposed) 31.27 / 0.940
DiNet + AcNet (proposed) 31.82 / 0.946

both the non-linear mixing dataset [75] and the linear mixing
dataset [39]. Moreover, although DiNet alone has achieved
better results than other models, with the help of AcNet, the
performance of the entire model can be further improved.
Table V shows the quantitative results of different models
for signle image reflection removal on two real datasets [3],
[40]. It manifests that the proposed DiNet and DiNet+AcNet
achieve the best performance in most real cases. To gain
more insight into the performance of different models on the

task of single image reflection removal, we visualize some
examples of the results generated by different models in Fig.
4. We notice that our DiNet can remove the reflection more
effectively than other three models. Furthermore, with the help
of AcNet, the entire model can generate clearer and higher-
quality background images.

D. Application: Single Image Rain Removal
Experimental settings. We conduct single image rain re-

moval experiments with two experimental specifications. We
first follow the experimental settings in [10] to conduct the
large-scale training/testing experiment. The dataset presented
by Jiang et al. contains 13700 clean/rain image pairs from
[16], [50] for training the network. Four test datasets are used
to compare the performances of different methods including
Rain100L [49], Test2800 [16], Test1200 [77], and Test100
[50], which contain 100, 2800, 1200, 100 clean/rain image
pairs, respectively. We further validate the effectiveness of our
model on a relatively small but difficult dataset, i.e., Rain100H
(heavy-rain cases) [49], which includes 1800 images for
training and 100 images for testing. Since the ground truth
rain streaks of the training images in Jiang et al. [10] are not
available, we simply set the ground truth of the second output
as a “zero image” [20] and only train one pathway of the
AcNet during training.
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Fig. 7. Qualitative comparison of different methods for single image shadow removal on the ISTD [8] dataset.

Input Ground truth DSC+ DiNet DiNet+AcNet

Fig. 8. Qualitative comparison of different methods for single image shadow
removal on the SRD [17] dataset.

We compare our model with state-of-the-art methods for sin-
gle image reflection removal including: DDN [16], JORDER
[49], DerainNet [46], RESCAN [78], DIDMDN [77], DAF-Net
[5], UMRL [79], SEMI [80], PreNet [6], and MSPFN [10]. All
these methods are trained and tested under the same training
and testing splits as mentioned above.

Results. Table VI presents the performances of differ-
ent models for single image rain removal on four test
datasets, i.e., Rain100L [49], Test2800 [16], Test1200 [77],
and Test100 [50]. It quantitatively manifests that our DiNet
and DiNet+AcNet achieve the state-of-the-art performances on
the single image rain removal task. Moreover, with the help
of AcNet, the performance of the entire model can outperform
other state-of-the-art single image rain removal methods. Fig.
5 presents the visualization results of the different methods
for single image rain removal. It qualitatively manifests that
our DiNet can effectively separate the rain streak from a
rainy image but may over-smooth some details. It is worth
mentioning that our DiNet+AcNet can not only remove the
rain streaks but also keep and restore the image details.
Moreover, our methods also achieve the best performance on
a relatively difficult dataset: Rain100H, as shown in Table VII.
Since the ground truth rain streaks are available in Rain100H,
we also show the visualization examples of the generated rain
streaks in Fig. 6. It further manifests that our methods can
effectively separate rain streaks and clean backgrounds.

TABLE VIII
PERFORMANCE OF DIFFERENT MODELS FOR IMAGE SHADOW REMOVAL
ON SRD DATASET [17] AND ISTD DATASET [8] (IN TERMS OF RMSE

(LOWER IS BETTER)).

Methods SRD [17] ISTD [8]

Yang et al. [81] (TIP’12) 22.57 15.63
Guo et al. [53] (TPAMI’12) 12.60 9.300
Gong et al. [82] (BMVC’14) 8.730 8.530
DeshadowNet [17] (CVPR’17) 6.640 7.830
ST-CGAN [8] (CVPR’18) 8.230 7.470
DSC [83] (TPAMI’19) 6.210 6.670
ARGAN [7] (CVPR’19) 5.740 6.680
DAD [20] (CVPR’20) 5.823 6.566
DiNet (proposed) 5.384 6.277
DiNet + AcNet (proposed) 5.076 5.613

E. Application: Single Image Shadow Removal

Experimental settings. We validate the performance of
the proposed method for the single image shadow removal
task on two frequently used datasets: SRD [17] and ISTD
[8]. The SRD dataset [17] contains 3088 shadow/shadow-free
image pairs, among which 2680 and 408 images are split for
training and test respectively. The ISTD dataset [8] contains
1870 shadow/shadow-free/shadow-mask image triplets, among
which 1330 and 540 images are split for training and test
respectively. We compare our methods with 8 SOTA image
shadow removal models, including DeshadowNet [17], ST-
CGAN [8], DSC [83], ARGAN [7], DAD [20], etc.

Results. Table VIII presents the quantitative results of dif-
ferent methods for the single image shadow removal. We use
the evaluation criterion used by Guo et al. [53], i.e., RMSE, of
which the lower score is better. It manifests that our proposed
methods outperform other methods on both two datasets. Fig.
7 shows the qualitative comparison of our methods with DSC
and DSC+ [83] on the ISTD [8] dataset. We notice that DSC
and DSC+ can remove the shadow but introduce obvious
artifacts in shadow areas. The proposed DiNet can remove
the shadow without obvious artifacts. However, there is still
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TABLE IX
QUANTITATIVE COMPARISON RESULTS ON REAL TEST IMAGES IN LOL-Real DATASET [84].

Metric RRM [56] SRIE [85] DRD [84] DeepUPE [86] SICE [87] EG [58] DRBN [59] DiNet AcNet

PSNR 17.34 17.34 15.47 13.27 19.40 18.23 20.13 20.73 22.16
SSIM 0.685 0.685 0.567 0.452 0.690 0.616 0.829 0.889 0.908

Low light Ground truth DiNet+AcNet

Fig. 9. Visualization of the restored background images by our model for
low light enhancement.

some residual information from the shadow. After the process
of AcNet, we observe that the residual information from the
shadow is less than before, and the perceptual quality is better.
Moreover, the shadow masks shown in Fig. 7 also demonstrate
that our method can effectively separate the shadow masks
and the background images. Fig. 8 shows the qualitative
comparison of our methods with DSC+ [83] on the SRD
[8] dataset, which further validates the effectiveness of our
methods.

F. Application: Illumination Correction

Experimental settings. We further conduct the experiment
for one single image illumination correction task, i.e., low
light enhancement, on LOL-Real dataset [84]. We follow the
experimental settings of the supervised stage in [59] to conduct
the experiment, which splits the LOL dataset into 689 and
100 low-light/normal-light image pairs for training and testing,
respectively. Seven state-of-the-art methods including RRM
[56], SRIE [85], DRD [84], DeepUPE [86], SICE [87], EG
[58], and DRBN [59] are introduced for comparison.

Results. Table IX presents the performances of different
models for low-light enhancement on LOL-Real dataset [84].
It quantitatively manifests the superiority of our methods. It is
worth mentioning that even though DRBN [59] uses additional
datasets for two-stage semi-supervised training, our method
still performs better than DRBN. Fig. 9 also manifests that
our method can effectively enhance the low-light images.

G. Failure Cases

As shown in Fig. 10, our method also has some failure
cases. It can be observed from the first two examples that if
the superimposed parts are produced by the superimposition
of two complex textures, such as faces, the restored results
are not very good. Moreover, if one image layer is strongly

Input GT Ours Input GT Ours

(a) (b)

(c) (d)

Fig. 10. Failure cases of our method.

suppressed by another layer, the restored results are also not
satisfactory. Fig. 10 (c) (d) show two example results of our
method for low-light cases. It can be observed that for normal
light contents, our method can still perform well, while for
low-light area, the separation results may not be good.

V. CONCLUSION

In this paper, we define the superimposed image sepa-
ration problem as the visual confusion decomposition task
which aims to restore two separated images and eliminate
the visual confusion from the non-target image. Inspired
by the development then rivalry process of human vision
on a single superimposed image, we propose a framework
for single superimposed image decomposition, which mainly
includes a differentiation net, an activation net, and multiple
loss functions. Experimental results indicate that the proposed
framework achieves the state-of-the-art performance on the
superimposed image separation task and multiple related ap-
plications, including single image reflection removal, single
image de-raining, single image shadow removal, etc.

Our approach has great potential since it can be used for
many image decomposition tasks, and can achieve good re-
sults. Moreover, besides being used for image decomposition,
our method may also contribute to other signal decomposition
tasks, such as audio separation. However, like most two/multi-
stage methods, the training/inference procedures of our method
are more complex compared to one-stage methods. It is
significant to consider integrating our two networks into a one-
stage. Moreover, our methods need to be trained on different
tasks respectively to work fine. Our future works will explore
how to train our model on mixed tasks to handle all these
tasks simultaneously.
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