
C H A P T E R

10

Behavioral phenotype features of autism
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10.1 Introduction

Autism spectrum disorder (ASD; henceforth
“autism”) is one type of neurodevelopmental con-
dition, whose underlying neurobiology marker is
still unclear. Individuals with autism show delays
in the development of human cognition [1], lead-
ing to the difficulties with cognitive empathy
across the lifespan [2]. The phenotype markers
including social communication symptoms, fix-
ated or restricted behaviors or interests, hyper- or
hypo-sensitivity to sensory stimuli, and associated
features have historically been the primary mar-
kers in the diagnosis procedure of autism [3].
However, current diagnosis procedures are time
and labor expensive and require well-trained clin-
icians to administer, resulting in long waiting
times for at-risk individuals. In this paper, we dis-
cuss several state-of-the-art techniques exploring
objective and quantitative behavior phenotype
features for autism, which includes atypical visual
attention, action and drawing behavior. These
techniques may shed light on future studies and
instruments related to the analysis and computer-
aided diagnosis for autism based on behavioral
phenotype.

Sensory symptoms [4] are widely observed
among individuals with autism [5] and may affect
every modality including vision, audition, touch,
smell, and taste. Atypical sensory perceptions are
identified to be one of the core characteristics of
autism [4]. As an important aspect of sensory per-
ception, atypical visual attention is often observed
in individuals with autism [6]. Eye movement is a
representative sensory phenotype since it encodes
rich information that can reflect human cognition,
attention, psychological factors, and so on. Visual
attention differences between individuals with
autism and typically developing (TD) groups
have been widely observed and frequently
reported in the literature [7]. These differences
include reduced joint attention behaviors [8],
reduced attention to social scenes [9], and prefer-
ence to low-level features of the stimuli [10], etc.
In brief, individuals with autism show reduced
attention to social stimuli (i.e., faces, conversa-
tions, etc.) but pay more attention to nonsocial sti-
muli (i.e., vehicles, electronics, etc.).

Since eye movements encode so much
underlying human cognition information and
many studies have demonstrated the differ-
ences in eye movements between individuals
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with autism and healthy controls, recently,
some researchers are exploring the use of eye
movements as phenotype markers to aid the
diagnosis of autism. However, the stimuli that
can comprehensively and accurately differenti-
ate two groups through eye movements still
need to be explored. In this paper, we consider
three types of stimuli including natural stimuli,
face stimuli, gaze-following stimuli, and dis-
cuss the gaze pattern differences between
autistic people and TD people on these stimuli.

Several studies have explored the visual atten-
tion of individuals with autism on natural stimu-
li [7,10,11]. Wang et al. conducted data-driven
analysis of gaze patterns during natural scene-
viewing in individuals with autism which shows
the visual attention in autism are biased to low-
level pixel features (such as contrast, color, and
orientation) [11]. Duan et al. conducted experi-
ments on a wide range of natural stimuli and
analyzed several differential features between
children with autism and TD controls [7]. Based
on these differences, some deep neural network
(DNN)-based studies have been performed
[11,12], which tried to predict the gaze patterns
of children with autism and typical controls,
respectively. Moreover, a successful challenge
[13] held on IEEE International Conference on
Multimedia and Expo (ICME) also attracted
many competitors and produced several possible
solutions for both the prediction and the classifi-
cation of the gaze patterns of individuals with
autism and typical controls.

Since faces are important social cues, research
related to the visual attention of individuals with
autism on face stimuli has also attracted the
attention of many researchers. Compared to the
normal population, individuals with autism
have impairments in face recognition or discrimi-
nation [14]. Existing eye-tracking experiments
consistently demonstrate that people with autism
have reduced visual attention to faces compared
to the controls [15]. Regarding visual attention
on core facial features, some studies found
reduced visual attention of people with autism

to these regions [16], while other studies reported
no differences in gaze patterns between autism
and typically developing individuals [17].
Moreover, the influence of facial emotions on the
visual attention between autistic individuals and
TD people is different [18]. Duan et al. [19] con-
ducted experiments on face images in the wild
and analyzed several features related to facial
images. A DNN-based model for predicting the
gaze pattern of individuals with autism on face
images has also been proposed.

Another type of special social stimuli that may
arise the visual attention differences between indi-
viduals with autism and TD controls is joint atten-
tion. Gaze cues can provide not only information
about the locations of gaze-at objects but also com-
plicated insights for social cognition. People can
pay more attention to the object being looked at
for social referential understanding, such as visual
perspective-taking and empathy [20]. Falck-Ytter
et al. [21] tested the spontaneous gaze and point-
gesture following in autistic children. The gaze
performance results showed that gaze following is
closely related to adaptive communication skills
and indicated joint attention impairments in
autism. In another study [22], TD children showed
longer first fixations to the target during the con-
gruent condition (i.e., the head of the model is ori-
ented to and gazes at the target), while autistic
children showed shorter duration. This experi-
ment result indicated the loss of ability to enhance
social salience of the gaze-at target in autistic chil-
dren. Fang et al. [23] conducted the first large-
scale experiment among autistic children in terms
of the visual attention on gaze-following stimuli.
A DNN-based classification model was also
proposed to classify the autistic children and TD
controls based on their gaze pattern on gaze-
following stimuli, which achieved better results.

There are many other visual stimuli that may
be helpful in distinguishing individuals with
autism and TD people such as biological motion
stimuli [24,25], etc. The atypical gaze patterns of
individuals with autism still need to be further
explored.
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Besides eye movements, atypical action behav-
ior is also common among autistic individuals.
Behavior action phenotypes, such as fixated or
restricted behaviors or interests, have historically
been adopted as one important index for the diag-
nosis of autism [3]. However, current action phe-
notype diagnostic procedure still needs clinicians
to roughly estimate the symptoms. To the best of
our knowledge, there are no existing automatic
methods that can routinely screen autism and
give level inference, accordingly based on their
atypical action. Objective methods or instruments
are also lacking. With the rise of DNN, impressive
progress has been made in action detection and
recognition, which also promotes some studies on
exploring automatic detection and recognition of
atypical action behavior [26]. These automatic
methods can help detect autism effectively and
with low cost.

Finally, another atypical behavior that has
not been widely studied, that is, atypical draw-
ing behavior, may also help automatically
screen autism. Art therapy for autism has been
studied a lot [27] and researchers believe that
drawing is a nonverbal way of communication
that may help children with autism speak up.
Shi et al. [28] explored the differences between
the paintings drawn by autistic children and
TD controls. Since drawing can also reflect the
human cognition, and psychological factors, it
may also reveal the hallmarks of autism. This
drawing phenotype may provide a large-scale
screening method for autism.

Overall, in this paper, we discuss several
promising artificial intelligence (AI)-based

methods to automatically and objectively char-
acterize and detect the behavior phenotype of
ASD. These methods can be further used to
assist in the screening and diagnosis of autism,
thereby improving the efficiency and quality of
the diagnosis of autism.

10.2 Eye movement behavior phenotype
of autism

In this section, we mainly focus on the pheno-
type of eye movement behavior. As mentioned
above, individuals with autism show reduced
attention to social contents. Since eye movement
needs stimuli to activate, it is important to explore
the gaze pattern of autistic individuals on differ-
ent stimuli and design effective stimuli and proce-
dures to aid the diagnosis of autism. Here we
discuss three types of stimuli including natural
stimuli, face stimuli, and gaze-following stimuli
as follows. The general procedure from data col-
lection to processing and analysis is illustrated in
Fig. 10.1.

10.2.1 Natural stimuli

10.2.1.1 Dataset

Duan et al. [7] established a dataset of eye
movements for children with autism on natural
stimuli, which is the first large-scale open
source eye movement dataset for autism. A
total of 500 images selected from MIT eye-
tracking dataset [29] were included in the

FIGURE 10.1 General procedure from data collection to data processing and analysis.
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dataset. These images covered a wide range of
natural scenes including animals, buildings or
objects, natural scenes, one person, several peo-
ple, people with objects, etc.

Twenty high-functioning autistic children
were recruited in this experiment. All subjects
met DSM-V diagnostic criteria for autism [3].
Since it is hard to make children with autism
concentrate on the screen, only fourteen sub-
jects could complete the calibration step and
provide valid eye movement data. The ages of
the remaining autistic children were between 5
and 12 years, with an average of 8 years.
Fourteen typically developing controls were
also recruited. These controls matched in terms
of age, gender, race, education, and intelligence
quotient (IQ) with the children with autism, in
which IQ was assessed using the Wechsler
Abbreviated Scale of Intelligence (WASI). All
subjects including autistic children and con-
trols were confirmed to have normal or
corrected-to-normal vision.

During experiments, all subjects were seated
at around 65 cm from the eye tracker Tobii

T120, which displayed the stimuli (natural
images) on a 17 inches screen. The resolution
of the screen is 12803 1024. The sampling rate
of the eye tracker was set to 120 Hz. To avoid
eye fatigue and inattention, the experiment
was divided into several short sessions. For
each session, all subjects freely watched 30
images that were presented in different ran-
dom orders. Each image was displayed for
3 seconds and a 1-second gray-background
image was displayed between stimuli. The cali-
bration of the eye tracker was done before each
session for each participant.

10.2.1.2 Analysis

The eye movement data can be obtained from
the above procedure. It is important to perform
qualitative analysis based on the dataset to shed
light on subsequent quantitative analysis and
algorithm designing. Fig. 10.2 shows the exam-
ples of the comparison between the visual atten-
tion of autistic individuals and TD controls. The
first three subfigures in the first row show a
series of social activities. Fig. 10.2A demonstrate

FIGURE 10.2 The visual attention comparison between children with autism and TD controls. Three columns of each
subfigure from the left to the right are stimulated images, heat map of the visual attention of children with autism and
heat map of the visual attention of TD controls.
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the joint attention difference between children
with autism and controls, where autistic children
tend to focus on the people or objects of interest
in the center region without the consideration of
joint attention. However, as shown in Fig. 10.2B,
this absence of joint attention of autism will dis-
appear when the target is an object or an animal,
and they even pay more attention to these areas
of images compared with TD controls. We claim
this phenomenon as objects or animals bias. The
center bias as mentioned in [10] can also be
widely observed in this dataset, which may
reveal the unconscious attention behavior of
autism.

Another observation is hand bias, which can
be concluded from this dataset as demonstrated
in Fig. 10.2D. In the situation where there is an
interactive activity between objects and the
hand of the main character, children with
autism tend to focus more on the hand or the
objects in the hand, while TD controls pay more
attention on the face of the main character.
Fig. 10.2E shows the visual attention compari-
son between autistic children and TD controls
on landscape images. An interesting phenome-
non against the center bias as described in [10]
can be observed in this situation. Autistic chil-
dren tend to fixate more on pixel-level salient
features and the distribution of their attention
on landscape images are scattered, while TD
controls show obvious center bias on this kind
of stimuli. Thus, the center bias of visual atten-
tion may be related to whether subjects are
interested in the image, and if they do not have
interest in the image, more obvious center bias
can be observed. As demonstrated in Fig. 10.2F,
when faces are the main contents of one image,
the visual attention maps of children with
autism and TD controls are similar. This is a lit-
tle bit different with previous works, thus more
specific discussion on face stimuli will be per-
formed later.

The differences also exist in gaze sequence
(i.e., scan path), readers can refer to [7] for
more details.

10.2.1.3 Gaze pattern classification and
saliency prediction

Studying the differences between visual atten-
tion patterns of individuals with ASD can be
helpful in the diagnosis of this disorder and it can
also help on the development of adequate tools
that can improve their quality of life.

In this sense, the recognition of characteristic
features in the way that individuals with ASD
explore visual stimuli by analyzing their
sequences of fixations can provide insights to
identify them. Thus, the development of auto-
matic models able to detect these characteristic
patters can be a great support for clinicians in
the diagnosis and assessment of ASD.

In addition to the visual attention patterns
related to the fixation trajectory, identifying sys-
tematic behaviors of individuals with ASD related
to the regions or contents within the visual stimuli
can be helpful to develop computer-human inter-
faces specifically designed for the needs and com-
fort of people with ASD. In this effort, saliency
models that are able to predict those regions or
contents that are more important for individuals
with ASD can be of great help.

In particular, these two cases (depicted in
Fig. 10.3) were considered for the two tracks
proposed within the Grand Challenge
“Saliency4ASD: Visual attention modeling for
Autism Spectrum Disorder,” held at IEEE ICME
‘19 [13]. For both cases, images were used as
visual stimuli to train and test the models [7],
and only high-functioning children with ASD
and children with TD were considered, without
accounting neither for the possible presence of
comorbidities (i.e., when two or more disorders
co-occur in the same subject, such as Attention
Deficit Hyperactivity Disorder), nor for different
severities of ASD within the autism spectrum.

10.2.1.4 Models submitted to Saliency4ASD

For the prediction of the saliency maps that
fit the gaze behavior of children with ASD,
four models from four different teams were
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submitted to the Grand Challenge. Their main
characteristics are:

• Shanghai University & University of Rennes
(SU&UR) [30]: The proposed model was
based on a Dilated Convolutional Network
(DCN) grounded on VGG-16 [31] with
deconvolutional operations. In addition, the
approach considered the fusion of multilevel
features, deep supervision, and single-side
clipping.

• University of Rennes & Shanghai University
(UR&SU) [32]: This approach was based on a
Deep Convolutional Neural Network (CNN)
based on a 2-stream VGG-16 [31] and coarse-
to-fine architecture. Another particularity of the
model was the loss function embedded on a
regularization term.

• Jiangxi University of Finance and Economics
(JUFE) [33,34]: This model employed a DNN
based on U-Net [35] and a novel loss
function called Positive and Negative
Equilibrium Mean Squared-Error (PN-MSE).

• Indian Institute of Technology Jodhpur
(IITJ): This team submitted a model whose
implementation details were not revealed.

In addition, a baseline model was used to
obtain an idea of the added value provided by

proposed models with respect to a state-of-the-
art model. Thus, the SalGAN [36] model was
considered without any re-training nor tuning
as baseline.

Regarding the classification of an observer
with ASD or TD given an image and the
sequence of fixations, five different teams sub-
mitted a total of eleven models, whose main
properties are:

• Technical University of Munich (TUM) [37]:
This team proposed a random forest
classifier using features from: scanpaths,
saliency (computed with SAM-ResNet [38])
and image content (using a CNN-based face
detector).

• Roma Tre University (R3U) [39,40]: The
proposed model was a TreeBagger classifier.
based on random forest, using features
from: image content (using YOLO object
detector [41]), saliency (based on SDSP [42]),
fixations, and center bias.

• University of Miami (UM) [43]: A model
based on CNN and Long Short-Term
Memory (LSTM) architectures was
proposed. Firstly, SalGAN [36] model was
used to estimate image saliency. In total, this
team proposed three different models

FIGURE 10.3 Diagram of the two types of models
considered in the Grand Challenge “Saliency4ASD.” (A)
Saliency prediction models that fit gaze behavior of peo-
ple with ASD, (B) models able to classify ASD and TD
viewers using gaze data.
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combining two variants of CNN structures
and with/without batch normalization.

• Univ. of California Davis & Univ. of Kentucky
(UCD&UK) [44,45]: This team submitted three
models: one using an architecture with two
branches (based on Resnet 46) to extract image
features and to process data points models,
and two models based on a fully connected
dense network (FCN) trained on real and
synthetic (using STAR-FC [46]) scanpaths, one
using a small set of high-level features and the
other using all available information. A third
model was proposed.

• East China Normal University (ECNU) [47]:
This approach was based on a simple
classifier that analyzes the gaze-deviation
distance (using a nonparametric visual
model to obtain image saliency) and gaze
duration time. With different settings of the
parameters, three versions of the model
were submitted.

In this case, the following baselines were
used: a random classifier, a classifier that
labeled all inputs as TD, and another one label-
ing all as ASD.

10.2.1.5 Evaluation criteria

To evaluate the performance of the models, the
outputs provided by them for the input test data
were compared with the ground-truth data
(which is not known by the model developers for
the sake of a fair comparison among models).

In particular, for the models that estimate
the saliency of children with ASD given an
input image, the following metrics were used
to compare the output saliency models with
from the ground truth: Normalized Scanpath
Saliency (NSS), Kullback�Leibler divergence
(KL), Correlation Coefficient (CC), Similarity
(SIM), and Area under the curve (AUC) [48]1.

Furthermore, to evaluate the performance of
the models that, given an image and a

sequence of fixations from one observer, try to
classify the subject between ASD or TD, typical
classification metrics were used, taking into
account the labels (ASD5 1 and TD5 0) pro-
vided by the models and the labels from the
ground truth. In particular, the following set of
metrics was used [49]: accuracy, precision,
recall/sensitivity, specificity, F1-score, AUC,
and Cohen’s Kappa. Given the limitations of
some of these metrics, this complete set was
used to better compare the models.
Nevertheless, a more appropriate selection of
metrics will be another focus of the future
research taking into account that it depends on
the balance of the dataset and the specific sce-
nario. For instance, when classifying subjects
with “ASD” and “TD,” a certain trade-off
between high classification performance and
low false negative rate (classify as “TD” sub-
jects with “ASD”) would be important.

10.2.1.6 Results of Saliency4ASD

The results of the two types of models sub-
mitted to the Grand Challenge “Saliency4ASD”
according to the aforementioned set of metrics
are reported in Table 10.1 and 10.2.

As it can be seen, and taking into account
the properties of the models described in the
previous Section 10.2.1.4 (and more details can
be found in their respective papers), machine
learning approaches generally provide better
performance. In addition, the combination of
image content features (e.g., faces, eyes, mouth,
presence and size of other objects, contextual
semantics, etc.) and features related to explora-
tion biases of people with ASD (e.g., fixations
close to the center of the image, fixation dura-
tions, etc.) provide significant advantages in
contrast with other features [13]. Finally, as
reflected by the reported numbers for the per-
formance metrics, it is worth noting that fur-
ther research is needed to obtain better
performing models.

1 Available at http://saliency.mit.edu/

21910.2 Eye movement behavior phenotype of autism

Neural Engineering Techniques for Autism Spectrum Disorder, Volume 2

http://saliency.mit.edu/


10.2.2 Face stimuli

10.2.2.1 Dataset

Duan et al. [19] further established a data-
set of eye movements for children with
autism on face stimuli, which is the first

large-scale open source dataset of its kind. A
total of 300 images selected from an open
face dataset [50] were included in the dataset
considering the balance of various emotions
and whether the content is appropriate for
children. The collected images contain faces

TABLE 10.1 Performance for the set of saliency metrics of the submitted models for saliency prediction of individuals
with ASD.

Team NSS (m) CC (m) SIM (m) KL (k) AUC_Judd (m) AUC_Borji (m) Rank

SU&UR [30] 1.510 0.681 0.623 0.590 0.818 0.786 1

UR&SU [32] 1.419 0.682 0.631 0.902 0.811 0.785 2

JUFE [33,34] 1.245 0.600 0.587 0.632 0.790 0.769 3

IITJ 0.656 0.316 0.468 0.911 0.683 0.667 4

SalGAN [36] 1.510 0.654 0.601 1.301 0.808 0.758 Baseline

Note: The rank of the team in the Saliency4ASD Grand Challenge is indicated in the last column. Specific details on the ranking method can

be found in [13]. (m: the higher the better, k: the lower the better).

TABLE 10.2 Performance for the set of classification metrics of the submitted models for classification of individuals
between ASD and TD.

Team Acc. Recall Precision F1 Cohen’s κ AUC Specificity Rank

TUM [37] 0.598 0.717 0.574 0.632 0.201 0.644 0.484 1

R3U [39,40] 0.593 0.684 0.570 0.616 0.189 0.595 0.506 2

UM [43] 0.557 0.877 0.532 0.658 0.127 0.564 0.251 3

0.579 0.592 0.563 0.570 0.158 0.579 0.566

0.574 0.594 0.568 0.568 0.149 0.575 0.556

UCD&UK [44,45] 0.551 0.635 0.527 0.546 0.106 0.613 0.471 4

0.542 0.741 0.522 0.610 0.091 0.575 0.351

0.539 0.807 0.519 0.629 0.089 0.544 0.282

ECNU [47] 0.516 0.705 0.504 0.585 0.041 0.521 0.337 5

0.446 0.397 0.429 0.412 20.110 0.445 0.493

0.420 0.442 0.413 0.427 20.159 0.421 0.399

Random 0.499 0.499 0.488 0.489 20.001 0.499 0.499 Baseline

ALL_ASD 0.489 1 0.489 0.656 0 0.5 0 Baseline

All_TD 0.511 0 0 0 0 0.5 1 Baseline

Note: The rank of the team in the Saliency4ASD Grand Challenge is indicated in the last column. Specific details on the ranking method can

be found in [13]. (m: the higher the better, k: the lower the better).
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of various sizes, poses, emotions, ages, gen-
ders, etc. The selected images can be classi-
fied into six expressions (emotions),
including generally positive, very positive,
neutral, generally negative, very negative,
and complex expressions, respectively, which
are demonstrated in Fig. 10.4. Each expres-
sion has 50 images in this dataset. This data-
set can be used to explore that the gaze
patterns of children with autism and healthy
children are similar or different for face sti-
muli under wild condition.

The procedure of recruiting subjects and
conducting subjective experiments are similar
as mentioned above. Please refer to [19] for
more details.

10.2.2.2 Analysis

Face is a strong semantic region, which con-
tains many salient features. To comprehensively
compare the visual attention of individuals with
autism and TD controls on face stimuli, the facial
region was first divided into several regions of
interest (ROI). The facial landmarks as well as
pose and emotion were detected using a facial
behavior analysis toolkit [51]. The CE-CLM
approach [52] was adopted to localize 66 land-
mark points and estimate face pose, and the
action unit (AU) detection system as mentioned
in [53] was used to calculate facial expressions in
this work. Then several regions including face
region, ROI, and sub-ROI were defined accord-
ingly which can be found in Fig. 10.5.

FIGURE 10.4 Face stimuli with various expressions. From the left to the right are images with generally positive, very
positive, neutral, generally negative, very negative and complex expressions, respectively.

FIGURE 10.5 Definition of facial regions. (A) An example face image with facial landmarks. (B) The definition of facial
region. (C) The definition of region of interest. (D) The definition of sub-region of interest.
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Then, based on the collected eye movement
data and label information obtained from facial
behavior analysis toolkit, the analyses for the
differences between autistic children and con-
trols were conducted. First of all, it is necessary
to analyze the visual attention difference on
various regions. As shown in Fig. 10.6, the dif-
ferences between the statistic information on
each region are obvious. Fig. 10.6A illustrates
the comparison of the percentage of fixation
points on the facial region between autistic
children and controls. The green points and
blue points represent the percentage of fixation
points on faces for TD controls and autistic
children, respectively. The red points and black
points are filtered data of green points and
blue points, respectively. The filter is a moving
average filter with the span of 30. A similar
tendency can be observed with respect to the
percentage of fixation points on human faces,
which increases along with the increase of

facial proportion in the image for both autistic
children and controls. Meanwhile, TD controls
focus more on human facial regions compared
to autistic children.

Fig. 10.6B demonstrates the comparison of
fixation proportion in each ROI for autistic
children and TD controls. We can observe that
the fixation proportion of children with autism
in each ROI is less than that of controls. This
may reveal the atypical visual attention of chil-
dren with autism on human faces. Note that
for the ASD group, the percentage of fixations
in eyes ROIs is more than it is in nose or mouth
ROIs. The hypothesis of excess mouth viewing
in autism did not receive support in this study.
This phenomenon is in-line with the majority
of studies in the related field of ASD [18,54].
For nose and mouth regions, it can be observed
that autistic children fixate almost same on two
regions, while TD children focus more on nose
regions compared to mouth regions.
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FIGURE 10.6 Comparison of fixation distribution between autistic children and healthy children on different regions.
(A) On facial region. (B) In each region of interest. (C) In each sub-region of interest.

222 10. Behavioral phenotype features of autism

Neural Engineering Techniques for Autism Spectrum Disorder, Volume 2



Fig. 10.6C illustrates the fixation distribution
differences in each sub-ROI. As shown in
Fig. 10.5, each eye region is segmented into four
parts, including top left, top right, bottom left, bot-
tom right, and each nose or mouth region is seg-
mented into three parts, including left, middle,
and right. Comparing the sub-regions in left eye
and right eye, it can be observed that both autistic
children and TD controls concentrate most at the
bottom right and bottom left parts for left eye and
right eye regions, respectively. For the second
salient region, children with autism focus more at
top right and top left regions for left eye and right
eye regions, while TD children tend to look more
at bottom left and bottom right regions for left
eye and right eye regions. Comparing the sub-
regions in nose and mouth regions, the middle
parts of both nose and mouth regions are more
salient than other parts. Moreover, the fixation
distribution of children with autism is more dis-
persed compared to that of controls in the eye
region, nose region or mouth region.

The influence of facial expressions on the
visual attention of autistic children and TD
controls were also analyzed. Fig. 10.7 illustrates
the influence of facial expressions on the fixa-
tion distribution for autistic children and con-
trols, respectively. “Positive 1” represents
generally positive facial expressions (e.g.,
smile), “positive 2” represents very positive
expressions (e.g., laugh), “neutral” represents
neutral expressions, “negative 1” denotes

generally negative facial expressions (e.g., sad),
“negative 2” denotes very negative facial
expressions (e.g., cry), “complex” represents
complex expression (e.g., surprise). As shown
in Fig. 10.6A, percentages of fixation in eye
region are around 0.4 under all facial expres-
sions for TD controls, while under “positive 2,”
“neutral,” and complex facial expressions, chil-
dren with autism focus less on eye region com-
pared to other facial expressions. Fig. 10.6B
illustrates the fixation percentages in the nose
region under different facial expressions. It can
be observed that TD controls have similar fixa-
tion percentages in the nose region under dif-
ferent facial expressions, while autistic children
fixate less in the nose region under “negative
2” expression compared to other expressions.
Fig. 10.6C demonstrates the fixation percen-
tages in the mouth region under different facial
expressions. It is obvious that both autistic chil-
dren and TD children fixate less on the mouth
region under “positive 1,” “neutral,” and “neg-
ative 1” expressions. For the rest expressions,
controls focus more on the mouth region under
“positive 2” expression, while autistic children
fixate less under this expression.

10.2.2.3 Methods and results

Based on previously obtained atypical fea-
tures of the visual attention of autistic children,
a feature fusion network was designed to pre-
dict the gaze pattern of autism. To this end,
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FIGURE 10.7 Influence of facial expressions on the fixation distribution in each region of interest. (A) In eye region. (B)
In nose region. (C) In mouth region.
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5-dimensional atypical features were extracted
and fused and then concatenated to typical fea-
tures extracted by two VGG-16 networks. Then
with the help of a subnetwork for contextual
saliency, the predicted saliency map can be
obtained. The model is illustrated in Fig. 10.8.

As shown in Table 10.3, this specific model
achieves the best performance among all competi-
tive methods. Fig. 10.9 shows the comparison
results of this method with the ground truths and
the results of other methods. It can be observed
that the differences between the visual attention
map of ASD and TD are obvious. The visual
attentions of autistic children are more dispersed.
The fine-tuned CASNet [55] is better than the raw
model. Moreover, with the combination of
extracted atypical features, the model performs
better on the prediction of the visual attention of
autism on face stimuli.

10.2.3 Gaze-following stimuli

10.2.3.1 Dataset

As mentioned in the introduction, individuals
with autism show atypical joint attention behav-
ior, which motivated a study of exploring the

visual attention of them on gaze-following stimuli
[23]. A GazeFollow4ASD dataset was established
which includes 300 images with gaze-following
cues in the wild. These images were collected
from GazeFollow dataset [56], which is a large-
scale dataset with annotations of the location of
eyes of people and where they are looking at (i.e.,
gazed objects).

Eight high-functioning autistic children
were recruited, whose ages were between 4
and 16 years with an average of 9.6 years.
Their IQs were assessed using the Wechsler

FIGURE 10.8 Atypical saliency prediction model of autism for face stimuli. The extracted atypical features are 5-
dimension feature maps.

TABLE 10.3 Comparison of different methods for
predicting the visual attention of autistic children on face
stimuli. All methods were fine-tuned on the dataset.

Model AUC-Judd sAUC CC NSS

SALICON 0.8087 0.5552 0.6448 1.4237

mlnet 0.8186 0.5598 0.6955 1.6011

SAM-VGG 0.8369 0.5644 0.7710 1.7594

SalGAN 0.8256 0.5752 0.7422 1.6811

CASNet [35] 0.8350 0.6166 0.7800 1.7492

Duan et al. [19] 0.8480 0.6232 0.8272 1.8239
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Abbreviated Scale of Intelligence (WASI)
before the experiment, which were greater
than 70. All children with autism met the fifth
edition of the Diagnostic and Statistical Manual
of Mental Disorders (DSM-5). Ten healthy con-
trols without psychiatric history or develop-
mental delay were recruited correspondingly,
whose ages were between 4 and 14 years with
an average of 8.9, and WISC-IV IQs were
greater than 70. The gender and education
were also matched between two groups. Before
the experiment, all subjects were confirmed to
have normal or corrected-to-normal visual acu-
ity. The procedure of the experiment was simi-
lar with that mentioned above, reader can also
refer to [23] for more details.

10.2.3.2 Analysis

Fig. 10.10 shows the comparisons between
the visual attention maps of autistic children
and TD controls on gaze-following stimuli. As
shown in Fig. 10.10A, when there is only one
gaze interaction in an image, which is the sim-
plest scenario, TD controls tend to pay more
attention on both eyes and gaze-at objects and
focus more on eyes or faces, while autistic chil-
dren prefer to focus the gaze-at objects. As
shown in Fig. 10.10B, when the situation is
more complicated, that is, several gaze interac-
tions in an image, TD controls prefer to focus
eyes and faces of the main character in the
image for social reference, while autistic chil-
dren tend to look more at the gaze-at objects.

FIGURE 10.9 Visual attention map and predicted saliency map. From the first row to the bottom row are raw images,
visual attention map for autistic children, visual attention map for TD children, saliency map predicted by CASNet,
saliency map predicted by fine-tuned CASNet, saliency map predicted by the proposed model, respectively.
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This special gaze-following phenomenon fur-
ther proves the lack of social interactions moni-
toring in ASD. As shown in Fig. 10.10C, when
the gaze-following behavior occurs in a more
complex scene or is not the main part of the
image, children with autism show pixel-level
or object-level visual attention, while TD con-
trols show more semantic attention.

A comparison study between the gaze-
following stimuli and natural stimuli was con-
ducted. Table 10.4 shows the comparison
between two datasets (Jiang et al. [57] and
Fang et al. [23]), which conducted eye move-
ment studies based on natural image stimuli
and gaze-following stimuli, respectively. The
saliency metrics AUC, sAUC, CC, and NSS
were used to compare the similarity (i.e., dif-
ference) between the visual attention map of

individuals with autism and controls. It can be
observed that the difference between two
groups in the dataset of Jiang et al. [57] is less
than that in the dataset of Fang et al. [23],
which may indicate that the gaze-following sti-
muli are more discriminative for distinguish-
ing two groups (i.e., individuals with autism
and controls) based on eye movements.

10.2.3.3 Methods and results

Two subtasks were needed to classify the
gaze patterns between individuals with autism
and controls. The first subtask was to extract
discriminative features based on the visual
attention map of autism group and control
group. To highlight the difference between the
visual attention of autism group and control
group, the differences of fixation (DoF) density
maps [57] were obtained by calculating the
normalized pixel-wise subtraction of fixation
maps for two groups as:

DoF5 F1 2 F2; (10.1)

where F1 and F2 denote the fixation density
maps for individuals with autism and controls,
respectively. In this way, the visual attention
maps of two groups can be combined together,

FIGURE 10.10 The Comparisons between the visual attention maps of autistic children and TD controls on gaze-
following stimuli. (A) One gaze interaction in an image. (B) Several gaze interactions in an image. (C) Gaze interaction in
complex scenes. Three columns from the left to the right represent the image stimuli, the visual attention map for children
with autism and the visual attention map for TD controls, respectively.

TABLE 10.4 The comparison of two datasets (Jiang
et al. and Fang et al.) considering the similarity (i.e.,
difference) between the visual attention maps for children
with autism and healthy controls.

Metric

Dataset AUC-Judd sAUC CC NSS

Jiang et al. [57] 0.9185 0.8296 0.9571 2.6538

Fang et al. [23] 0.8438 0.6692 0.7466 2.0547
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which enables that distinguishing zones are
highlighted and similar zones are masked.

Then a discriminative saliency-features extrac-
tion module was designed to extract atypical DoF
features as shown in Fig. 10.11. A dilated convolu-
tional network was adopted to extract coarse fea-
ture maps from the input images, which was
modified from ResNet-50 by removing the stride
and introducing dilated convolutions in the last
two blocks. A long short-term memory (LSTM)
module was followed to recurrently process the
extracted features and enhance the saliency pre-
diction. Finally, the gaze-following prior was
adopted as the visual attention bias, instead of the
center bias, in the fusion step to further highlight
the gaze-following semantic information.

Finally, the Pearson’s Correlation Coefficient
(CC) and Kullback�Leibler divergence (KL)
functions were adopted as the loss function for
predicting the saliency DoF map, which is
defined as:

L P;Gð Þ5 σðP;GÞ
σðPÞ3σðGÞ 1

X
i

Gilog ε1
Gi

ε1Pi

� �
;

(10.2)

where P and G represent the predicted DoF
map and ground-truth DoF map, respectively,
σ is the covariance, i denotes the i-th pixel, and
ε is the regularization constant.

For the second subtask, that is, classification
task, a specific classification module was
designed. First, the feature vector was
extracted from the feature map extracted as
mentioned above at each location of fixation
point. Only the feature vectors corresponding
to the first 12 fixation points were extracted
with the dimension of 512a13 1 for each fea-
ture vector. After passing through two fully
connected (FC) layers with units of 1024 and
128 respectively and a softmax classifier, the
final prediction can be obtained.

As shown in Table 10.5, this method
achieved the best performance compared to
other methods on both the natural stimuli and
the gaze-following stimuli. Moreover, compar-
ing the performance of three methods between
two datasets, it can be observed that all models
can achieve better classification results on this

FIGURE 10.11 A LSTM-based model for extracting atypical features of autism by predicting the difference of fixation
(DoF) maps. Then this model is used to classify the gaze patterns of individuals with autism and healthy people.

TABLE 10.5 Performance comparison between the
classification accuracy of two methods (Jiang et al. and
Fang et al.) on two datasets.

Method

Dataset Jiang et al.

Zero padded

features (%) Fang et al.

Jiang et al. [57] 52.01% 70.34 71.63%

Fang et al. [23] 56.82% 77.12 79.94%
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gaze-following dataset, which indicates that
the gaze-following stimuli (i.e., joint attention
stimuli) may achieve better discriminative abil-
ity between the gaze patterns of individuals
with autism and healthy people.

10.3 Action behavior phenotype

Besides eye movements, individuals with
autism also show other types of atypical
behavior. Although these behaviors may be
different or even nonexistent among indivi-
duals with autism, they may help to judge the
degree of autism or assist the diagnosis from
another perspective. In this section, we discuss
the atypical behavior features of autism and
automatic models for recognizing them.

10.3.1 Dataset and analysis

A total of 30 videos (about 40 h) compose
the ASD40h dataset, which contains 5 most
common autistic behaviors, including hand
flapping, head banging, spinning in a circle,
toe walking, and moving fingers. Fig. 10.12
shows the example of these 5 common atypical
behaviors. Atypical action instances and

repetitive behavior instances were annotated in
each video.

The dataset was divided into 20 training
and 10 testing sequences. Data augmentation
manipulations were performed before training,
which includes segmenting the person and
scene background to increase the diversity of
the background and using shear transforma-
tion to efficiently simulate limited viewpoint
changes. Random flipping and corner cropping
like manipulations were also performed to fur-
ther augment the video data.

10.3.2 Methods and results

Fig. 10.13 presents the overview of the sys-
tem. To perform atypical action behavior rec-
ognition, a specific model was designed, which
includes 4 components as shown in Fig. 10.14,
that is, a 3D ConvNet temporal feature extrac-
tor, a temporal pyramid network, an ASD
action detector, and a repetitive behavior dis-
criminator. To enable efficient computation
and end-to-end training, the C3D temporal fea-
ture maps were shared in two tasks. The tem-
poral pyramid network was used to shorten
the feature map, while keeping the high-level
semantics. The ASD action detector was used to

FIGURE 10.12 Atypical action behavior for children with autism, including hand flapping, head banging, spinning in
a circle, toe walking, and moving fingers, etc.
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FIGURE 10.13 Overview of the system.

FIGURE 10.14 Framework of the approach. (A) Temporal feature extractor module. (B) Temporal pyramid network.
(C) Action detector for autism. (D) Repetitive behavior discriminator.
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classify the video segments into multiple cate-
gories. The repetitive behavior discriminator
was used to discriminate whether the whole
video contains repetitive behavior.

The first part of the model is the video—
temporal feature extractor. A 3D ConvNet was
used to extract spatio-temporal feature from the
assigned video buffer, of which the structure
is similar to the C3D architecture. To obtain
temporal-only features, a 3D convolutional filter
was added to extend the temporal receptive field.
A 3D max-pooling filter was adopted to down-
sample the spatial dimensions of the features.

A fully-convolutional temporal pyramid net-
work (TPN) similar to feature pyramid net-
work (FPN) was adopted to utilize high-level
semantic temporal features at all scales. It
includes a top-down pathway and a bottom-up
pathway with skip connections to build rela-
tionship. The bottom-up pathway was feed-
forward computation of anchor layers. The
top-down pathway generated higher resolution
features by upsampling temporally features,
then, these features were enhanced from the
bottom-up pathway via skip connections.
Three anchor features were finally obtained.

After extracting features, an ASD action detector
module was followed to detect the atypical action
behavior. For each temporal feature map of
anchor layers, specific actions of autism were
assigned. For the lower anchor layers, which had
smaller resolution and larger receptive field, it
was used to predict long ASD action (e.g., moving
fingers in front of the eyes). For the top anchor

layers, which had larger resolution and smaller
receptive field, it was used to predict short ASD
action (e.g., hand flapping).

Finally, a repetitive behavior discriminator module
was designed to classify whether the video con-
tains individuals with repetitive behavior. This
discrimination of repetitive behaviors can be seen
as a classification task. The high-level semantic
features were used for this task. A fixed-length
temporal pooling layer, named FoT pooling, was
designed to extract the fixed-length temporal fea-
tures from the top high-level semantic features.
The output of the FoT pooling was then fed into
two FC layers and then classified to predict
whether this video contains repetitive behavior or
not.

The training objective of this network was to
solve a mulit-task optimization problem. The
overall loss function was defined as:

L5 Laction class 1αLaction loc 1βLrepetitive class;

(10.3)

where Laction class is the action classification loss
for autism, Laction loc is the action detection loss
function for autism, Lrepetitive class is the proba-
bility loss function for the repetitive behavior,
α and β are two balanced hyper parameters.
Readers can refer to [26] for more details of
these loss functions.

Table 10.6 shows the results of mAP com-
parisons of atypical action recognition task. It
can be observed that the method of Tian et al.
[26] achieved the best performance compared

TABLE 10.6 mAP results for action detection.

Method S-CNN [58] SST [59] SSAD [60] R-C3D [61] Tian et al. [26]

α 0.1 49.3 50.4 53.0 58.3 56.6

0.2 45.3 47.4 50.4 53.6 54.2

0.3 37.8 44.3 47.8 48.2 50.1

0.4 30.1 32.7 34.5 34.8 35.2

0.5 21.8 25.5 25.7 27.2 28.1
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to other competitors surpassing the best state-
of-the-art model by almost 1%. As for the
repetitive behavior discrimination task, com-
pared to 4 state-of-the-art methods widely
used in this task, this method also achieved the
best performance with the repetitive behavior
classification accuracy up to 95.2% (Table 10.7).

However, though all these action recognition
model can achieve good classification or predic-
tion performance, whether it can be used in assist-
ing diagnosis for autism is still need to be
discussed. There are two reasons that may cause
the false diagnosis. The first reason is that not all
individuals with autism show atypical action
behavior or they may show different atypical
action behavior besides the dataset in [26], which
may cause missed diagnosis. The second reason
is that other diseases may also show atypical
actions such as repetitive behavior and this may
cause false diagnosis. However, this new method
still has its possibility for screening ASD due to its
large-range feasibility.

10.4 Drawing behavior phenotype

Besides atypical action behaviors, another
behavior which is less studied (i.e., drawing
behavior), may also reveal the hallmarks of

autism. In this section, we will discuss this
drawing behavior phenotype and its possible
applications.

10.4.1 Dataset

Shi et al. [28] established a painting dataset
drawing by individuals with ASD, which
includes 478 paintings from 15 children with
autism and 490 paintings from 20 TD children.
These paintings can be classified into four catego-
ries, including barbola painting, line-drawing, oil
painting, and watercolor painting, as illustrated in
Fig. 10.15. Then a subjective experiment was con-
ducted to extract manual features. Seven features
inspired from the observation of painting differ-
ences between autistic children and TD controls,
as well as the hallmarks of autism, were pro-
posed, and then three clinicians were recruited to
label these features. All three clinicians had never
accessed to these paintings before the experiment.

10.4.2 Analysis

Two common atypical behaviors including
atypical face processing behaviors and repeti-
tive behaviors were first analyzed. As reported
in [19], individuals with autism have impair-
ments in face recognition or discrimination

TABLE 10.7 Performance of repetitive behavior recognition task.

Method iDT [62] Two-stream [63] C3D (v1) [64] C3D (v2) [64] Tian et al. [26]

Accuracy (%) 88.2 89.0 93.6 94.5 95.2

FIGURE 10.15 Examples of four categories of paintings in the PASD dataset.
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compared to TD individuals, which may
denote the atypical facial semantic processing
of autism. As shown in the left part of
Fig. 10.16, comparing the face paintings from
children with autism and TD children, the face
paintings from children with autism are more
abstract and weird. Moreover, quantitative
comparison between the number of face paint-
ings demonstrates children with autism may
draw more paintings with faces. When com-
paring the average face numbers in their paint-
ings, it can be observed that children with
autism often draw more faces in one painting

compared to TD children. Furthermore, repeti-
tive behaviors can also be observed in the
paintings of autism. As shown in the right part
of Fig. 10.16, children with autism draw more
paintings with abstract repetitive patterns. The
quantitative comparison indicates the signifi-
cance of this difference. As for the number of
the repetitive patterns in one painting, there is
no difference between the two groups.

In addition to the two aforementioned atypi-
cal behaviors, four specific features for paint-
ings were also analyzed, as shown in
Fig. 10.17. Comparing the logical structure

FIGURE 10.16 Comparisons of two widely studied behaviors, that is, face processing behaviors and repetitive beha-
viors, between paintings of autistic children and healthy controls.

FIGURE 10.17 Comparisons of four specific painting behaviors, including logical structure, complete edge, clear
boundary, as well as fully filled color, between paintings of autistic children and healthy controls.
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between the paintings of autistic children and
healthy children, it can be observed that paint-
ings from children with autism barely follow
the normal logic, for example, people are
drawn upon a rooster or other meaningless
combinations. Comparing the edges in paint-
ings, children with autism usually draw paint-
ings without complete edges while TD
children often draw clear and complete border-
line. As for the boundary between different
parts or objects in paintings, children with
autism may not draw paintings with clear
boundary while TD controls tend to draw
paintings with clear demarcation of colors or
objects. Moreover, paintings from children
with autism may have large blank gap without
fully filled color. Finally, as shown in
Fig. 10.18, children with autism usually do not
consider the composition structure of the paint-
ing while TD children tend to draw their paint-
ings symmetrically and centered.

10.4.3 Results and discussion

Based on above analysis and extracted fea-
tures, a SVM classification experiment was
conducted. Table 10.8 shows the results of the
classification results.

From the above analysis and results, it can
be observed that the difference between the
paintings from children with autism and TD
people are obvious. Although whether it can
be used in the procedure of aiding the diagno-
sis still needs further discussion, since it is easy
to obtain paintings from children for parents,
this method may be helpful for the large-scale
screening of autism.

10.5 Discussion and conclusion

In this paper, we have discussed several
behavioral phenotype features of autism and sev-
eral state-of-the-art techniques related to automati-
cally and quantitatively measuring these
phenotypic features. The phenotype markers of
autism mainly include social communication
symptoms, fixated or restricted behaviors or inter-
ests, hyper- or hypo-sensitivity to sensory stimuli,

FIGURE 10.18 Comparisons of composition location between paintings of autistic children and healthy controls.

TABLE 10.8 Classification results of SVM model on
this PASD dataset.

Median Average Variance

Accuracy 0.8981 0.8519 0.0089
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and associated features [3]. Specifically, in this
chapter we mainly discussed three types of
behavior features of individuals with autism
including eye movement behavior, action behav-
ior, as well as drawing behavior, which can reflect
the phenotype symptoms of atypical social com-
munication and fixated or restricted behaviors of
autism. In this section, we will briefly summarize
this chapter and discuss several issues that need
to be explored in the future, in order to better use
computer-related technologies to promote the
progress of autism community.

As mentioned above, eye movements of
individuals with autism are significantly differ-
ent to typically developed individuals. We
have compared the difference of eye movement
patterns on three types of stimuli including sti-
muli in the wild, face stimuli, and gaze-
following stimuli. Significant differences can
be observed in all these three types of stimuli,
including social or nonsocial stimuli. However,
as discussed in [23], social stimuli, such as
gaze-following, may better help to classify the
gaze patterns between autism and typical
development. The natural stimuli in the wild
may be better for defining special traits for
autism. As for facial stimuli, facial expressions
have significant impacts on the visual attention
of autism [19]. However, single facial in one
image is not strong enough to differentiate the
state of autism. We argue that incorporating
the facial stimuli with various expressions into
strong social stimuli (such as gaze-following)
may better help to distinguish the gaze pat-
terns between individuals with autism and TD
people. Moreover, since videos have more
social stimulation, they may better help distin-
guish two groups. However, few studies have
been conducted on such stimuli. And since the
videos can incorporate audio stimuli into it to
guide the visual attention, mores studies are
still needed to analyze whether it is significant
to use and how to design audio stimuli.
Another issue that has not been considered in
previous studies is the viewport of stimuli.

Previous studies use the 2D screen to display
stimuli and attract visual attention, which may
cause two problems. First of all, individuals
may not concentrate on the screen and will
move their eyes off the screen, which may
cause the failure of eye tracking and add addi-
tional data collection workload. This may influ-
ence the application of it into diagnosis
procedure. Furthermore, restricted viewport is
different with the real-world perception, which
may not comprehensively reflect the visual
traits of autism. Future studies using Virtual
Reality (VR) or CAVE [65] contents as stimuli
may help quantify the traits and aid the diag-
nosis of autism better.

Atypical action behaviors are also the core
symptoms of autism, which attributes to the
fixated or restricted behavior phenotype char-
acteristics. The model in reference [26] can
accurately classify the actions of individuals
with autism and TD individuals. However,
atypical actions of individuals with autism are
complex and diverse for different individuals,
which requires more research and discussion
on this issue. As for the repetitive action
behavior, since not only children with autism,
but also individuals with other disorders may
also exhibit this atypical behavior, how to use
it still needs more future studies. Moreover,
drawing behaviors can also reveal several hall-
marks of autism, since painting can not only
show action behaviors, but also reflect the
human cognition, and psychological factors.
However, the work in [28] needs to manually
label several factors, automatic classification of
these paintings requires further research. These
action-based methods do not need special sti-
muli and can be easily obtained, which makes
these methods can be used to screen children
with autism.

Overall, using state-of-the-art AI techniques
(e.g., computer vision, natural language pro-
cessing, machine learning, etc.) with appropri-
ate stimuli (e.g., social stimuli, video stimuli,
etc.) to assist the screening and diagnosis of
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autism is significant and possible, and more
exploration studies should be conducted. We
hope this paper can help other researchers con-
duct experiments and facilitate future studies
related to this topic.
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